equations of motion in 2D (calculus)

none

March 16, 2024

Abstract

Generated by the Physics Derivation Graph.

Eq. ?? is an initial equation.

$$
\begin{equation*}
\vec{a}=\frac{d \vec{v}}{d t} \tag{1}
\end{equation*}
$$

Substitute LHS of Eq. ?? into Eq. ??; yields Eq. ??.

$$
\begin{equation*}
a_{x} \hat{x}+a_{y} \hat{y}=\frac{d \vec{v}}{d t} \tag{2}
\end{equation*}
$$

Substitute LHS of Eq. ?? into Eq. ??; yields Eq. ??.

$$
\begin{equation*}
a_{x} \hat{x}+a_{y} \hat{y}=\frac{d}{d t}\left(v_{x} \hat{x}+v_{y} \hat{y}\right) \tag{3}
\end{equation*}
$$

Separate two vector components in Eq. ??; yields Eq. ?? and Eq. ??

$$
\begin{align*}
& a_{x}=\frac{d}{d t} v_{x} \tag{4}\\
& a_{y}=\frac{d}{d t} v_{y} \tag{5}
\end{align*}
$$

Eq. ?? is an assumption. define the orientation of the coordinate system with respect to the gravitational acceleration such that x axis is perpendicular to gravity

$$
\begin{equation*}
a_{x}=0 \tag{6}
\end{equation*}
$$

Eq. ?? is an assumption. define the orientation of the coordinate system with respect to the gravitational acceleration such that y axis is parallel to gravity

$$
\begin{equation*}
a_{y}=-g \tag{7}
\end{equation*}
$$

Assume 2 dimensions; decompose vector to be Eq. ??.

$$
\begin{equation*}
\vec{a}=a_{x} \hat{x}+a_{y} \hat{y} \tag{8}
\end{equation*}
$$

Assume 2 dimensions; decompose vector to be Eq. ??.

$$
\begin{equation*}
\vec{v}=v_{x} \hat{x}+v_{y} \hat{y} \tag{9}
\end{equation*}
$$

Substitute LHS of Eq. ?? into Eq. ??; yields Eq. ??.

$$
\begin{equation*}
0=\frac{d}{d t} v_{x} \tag{10}
\end{equation*}
$$

Substitute LHS of Eq. ?? into Eq. ??; yields Eq. ??.

$$
\begin{equation*}
-g=\frac{d}{d t} v_{y} \tag{11}
\end{equation*}
$$

Multiply both sides of Eq. ?? by dt; yields Eq. ??.

$$
\begin{equation*}
-g d t=d v_{y} \tag{12}
\end{equation*}
$$

Indefinite integral of both sides of Eq. ??; yields Eq. ??.

$$
\begin{equation*}
-g \int d t=\int d v_{y} \tag{13}
\end{equation*}
$$

Simplify Eq. ??; yields Eq. ??.

$$
\begin{equation*}
-g t=v_{y}-v_{0, y} \tag{14}
\end{equation*}
$$

Add $v_{0, y}$ to both sides of Eq. ??; yields Eq. ??.

$$
\begin{equation*}
-g t+v_{0, y}=v_{y} \tag{15}
\end{equation*}
$$

Eq. ?? is an initial equation.

$$
\begin{equation*}
v_{y}=\frac{d y}{d t} \tag{16}
\end{equation*}
$$

Substitute LHS of Eq. ?? into Eq. ??; yields Eq. ??.

$$
\begin{equation*}
-g t+v_{0, y}=\frac{d y}{d t} \tag{17}
\end{equation*}
$$

Multiply both sides of Eq. ?? by dt; yields Eq. ??.

$$
\begin{equation*}
-g t d t+v_{0, y} d t=d y \tag{18}
\end{equation*}
$$

Indefinite integral of both sides of Eq. ??; yields Eq. ??.

$$
\begin{equation*}
-g \int t d t+v_{0, y} \int d t=\int d y \tag{19}
\end{equation*}
$$

Simplify Eq. ??; yields Eq. ??.

$$
\begin{equation*}
-\frac{1}{2} g t^{2}+v_{0, y} t=y-y_{0} \tag{20}
\end{equation*}
$$

Add y_{0} to both sides of Eq. ??; yields Eq. ??.

$$
\begin{equation*}
-\frac{1}{2} g t^{2}+v_{0, y} t+y_{0}=y \tag{21}
\end{equation*}
$$

Multiply both sides of Eq. ?? by $d t$; yields Eq. ??.

$$
\begin{equation*}
0 d t=d v_{x} \tag{22}
\end{equation*}
$$

Indefinite integral of both sides of Eq. ??; yields Eq. ??.

$$
\begin{equation*}
\int 0 d t=\int d v_{x} \tag{23}
\end{equation*}
$$

Simplify Eq. ??; yields Eq. ??.

$$
\begin{equation*}
0=v_{x}-v_{0, x} \tag{24}
\end{equation*}
$$

Add $v_{0, x}$ to both sides of Eq. ??; yields Eq. ??.

$$
\begin{equation*}
v_{0, x}=v_{x} \tag{25}
\end{equation*}
$$

Eq. ?? is an initial equation.

$$
\begin{equation*}
v_{x}=\frac{d x}{d t} \tag{26}
\end{equation*}
$$

Substitute LHS of Eq. ?? into Eq. ??; yields Eq. ??.

$$
\begin{equation*}
v_{0, x}=\frac{d x}{d t} \tag{27}
\end{equation*}
$$

Multiply both sides of Eq. ?? by $d t$; yields Eq. ??.

$$
\begin{equation*}
v_{0, x} d t=d x \tag{28}
\end{equation*}
$$

Indefinite integral of both sides of Eq. ??; yields Eq. ??.

$$
\begin{equation*}
v_{0, x} \int d t=\int d x \tag{29}
\end{equation*}
$$

Simplify Eq. ??; yields Eq. ??.

$$
\begin{equation*}
v_{0, x} t=x-x_{0} \tag{30}
\end{equation*}
$$

Add x_{0} to both sides of Eq. ??; yields Eq. ??.

$$
\begin{equation*}
v_{0, x} t+x_{0}=x \tag{31}
\end{equation*}
$$

Swap LHS of Eq. ?? with RHS; yields Eq. ??.

$$
\begin{equation*}
x=v_{0, x} t+x_{0} \tag{32}
\end{equation*}
$$

Assume 2 dimensions; decompose vector to be Eq. ??.

$$
\begin{equation*}
\vec{v}_{0}=v_{0, x} \hat{x}+v_{0, y} \hat{y} \tag{33}
\end{equation*}
$$

Figure 1: vector v components

Separate vector in Eq. ?? into components related by angle θ; yields Eq. ?? and Eq. ??.

$$
\begin{align*}
& \cos (\theta)=\frac{v_{0, x}}{v_{0}} \tag{34}\\
& \sin (\theta)=\frac{v_{0, y}}{v_{0}} \tag{35}
\end{align*}
$$

Multiply both sides of Eq. ?? by v_{0}; yields Eq. ??.

$$
\begin{equation*}
v_{0} \cos (\theta)=v_{0, x} \tag{36}
\end{equation*}
$$

Substitute LHS of Eq. ?? into Eq. ??; yields Eq. ??.

$$
\begin{equation*}
x=v_{0} t \cos (\theta)+x_{0} \tag{37}
\end{equation*}
$$

Eq. ?? is one of the final equations. Multiply both sides of Eq. ?? by v_{0}; yields Eq. ??.

$$
\begin{equation*}
v_{0} \sin (\theta)=v_{0, y} \tag{38}
\end{equation*}
$$

Swap LHS of Eq. ?? with RHS; yields Eq. ??.

$$
\begin{equation*}
y=-\frac{1}{2} g t^{2}+v_{0, y} t+y_{0} \tag{39}
\end{equation*}
$$

Substitute LHS of Eq. ?? into Eq. ??; yields Eq. ??.

$$
\begin{equation*}
y=-\frac{1}{2} g t^{2}+v_{0} t \sin (\theta)+y_{0} \tag{40}
\end{equation*}
$$

Eq. ?? is one of the final equations.

