coefficient of isothermal compressibility using the equation of state for an ideal gas

none

March 12, 2024

Abstract
Generated by the Physics Derivation Graph. https://notendur.hi.is/hj/EE2/HD1lausn.pdf Eq. 1 is an initial equation.

$$
\begin{equation*}
\kappa_{T}=\frac{-1}{V}\left(\frac{\partial V}{\partial P}\right)_{T} \tag{1}
\end{equation*}
$$

Eq. 2 is an initial equation.

$$
\begin{equation*}
P V=n R T \tag{2}
\end{equation*}
$$

Divide both sides of Eq. 2 by P; yields Eq. 3.

$$
\begin{equation*}
V=\frac{n R T}{P} \tag{3}
\end{equation*}
$$

Substitute LHS of Eq. 3 into Eq. 1; yields Eq. 4.

$$
\begin{equation*}
\kappa_{T}=\frac{-1}{V}\left(\frac{\partial}{\partial P}\left(\frac{n R T}{P}\right)\right)_{T} \tag{4}
\end{equation*}
$$

Simplify Eq. 4; yields Eq. 5.

$$
\begin{equation*}
\kappa_{T}=\frac{-n R T}{V}\left(\frac{\partial}{\partial P}\left(\frac{1}{P}\right)\right)_{T} \tag{5}
\end{equation*}
$$

Simplify Eq. 5; yields Eq. 6.

$$
\begin{equation*}
\kappa_{T}=\frac{-n R T}{V}\left(\frac{-1}{P^{2}}\right) \tag{6}
\end{equation*}
$$

Substitute LHS of Eq. 2 into Eq. 6; yields Eq. 7.

$$
\begin{equation*}
\kappa_{T}=\frac{-P V}{V}\left(\frac{-1}{P^{2}}\right) \tag{7}
\end{equation*}
$$

Simplify Eq. 7; yields Eq. 8.

$$
\begin{equation*}
\kappa_{T}=\frac{1}{P} \tag{8}
\end{equation*}
$$

Eq. 8 is one of the final equations.

References

