Physics Derivation Graph navigation Sign in

optics: Law of refraction to Brewster's angle

Generated by the Physics Derivation Graph.

\cite{2001_HRW}; see figure 34-27 on page 824

Eq. \ref{eq:5563180} is an initial equation. \begin{equation} \theta_{\rm Brewster} + \theta_{\rm refracted} = 90^{\circ} \label{eq:5563180} \end{equation} Subtract \(\theta_{\rm Brewster}\) from both sides of Eq. \ref{eq:5563180}; yields Eq. \ref{eq:3893026}. \begin{equation} \theta_{\rm refracted} = 90^{\circ} - \theta_{\rm Brewster} \label{eq:3893026} \end{equation} Eq. \ref{eq:9932375} is an initial equation. \begin{equation} n_1 \sin( \theta_1 ) = n_2 \sin( \theta_2 ) \label{eq:9932375} \end{equation} Change variable \(\theta_2\) to \(\theta_{\rm refracted}\) and \(\theta_1\) to \(\theta_{\rm Brewster}\) in Eq. \ref{eq:9932375}; yields Eq. \ref{eq:4176694}. \begin{equation} n_1 \sin( \theta_{\rm Brewster} ) = n_2 \sin( \theta_{\rm refracted} ) \label{eq:4176694} \end{equation} Substitute LHS of Eq. \ref{eq:3893026} into Eq. \ref{eq:4176694}; yields Eq. \ref{eq:4962698}. \begin{equation} n_1 \sin( \theta_{\rm Brewster} ) = n_2 \sin( 90^{\circ} - \theta_{\rm Brewster} ) \label{eq:4962698} \end{equation} Eq. \ref{eq:3940135} is an identity. \begin{equation} \sin( 90^{\circ} - x ) = \cos( x ) \label{eq:3940135} \end{equation} Change variable \(\theta_{\rm Brewster}\) to \(x\) in Eq. \ref{eq:3940135}; yields Eq. \ref{eq:7426234}. \begin{equation} \sin( 90^{\circ} - \theta_{\rm Brewster} ) = \cos( \theta_{\rm Brewster} ) \label{eq:7426234} \end{equation} Substitute LHS of Eq. \ref{eq:7426234} into Eq. \ref{eq:4962698}; yields Eq. \ref{eq:9701820}. \begin{equation} n_1 \sin( \theta_{\rm Brewster} ) = n_2 \cos( \theta_{\rm Brewster} ) \label{eq:9701820} \end{equation} Divide both sides of Eq. \ref{eq:9701820} by \(n_1\); yields Eq. \ref{eq:9314305}. \begin{equation} \sin( \theta_{\rm Brewster} ) = \frac{n_2}{n_1} \cos( \theta_{\rm Brewster} ) \label{eq:9314305} \end{equation} Divide both sides of Eq. \ref{eq:9314305} by \(\cos( \theta_{\rm Brewster} )\); yields Eq. \ref{eq:8585856}. \begin{equation} \frac{\sin( \theta_{\rm Brewster} )}{\cos( \theta_{\rm Brewster} )} = \frac{n_2}{n_1} \label{eq:8585856} \end{equation} Eq. \ref{eq:2621708} is an identity. \begin{equation} \tan( x ) = \frac{ \sin( x )}{\cos( x )} \label{eq:2621708} \end{equation} Change variable \(\theta_{\rm Brewster}\) to \(x\) in Eq. \ref{eq:2621708}; yields Eq. \ref{eq:1898054}. \begin{equation} \tan( \theta_{\rm Brewster} ) = \frac{ \sin( \theta_{\rm Brewster} )}{\cos( \theta_{\rm Brewster} )} \label{eq:1898054} \end{equation} Substitute LHS of Eq. \ref{eq:1898054} into Eq. \ref{eq:8585856}; yields Eq. \ref{eq:5179630}. \begin{equation} \tan( \theta_{\rm Brewster} ) = \frac{ n_2 }{ n_1 } \label{eq:5179630} \end{equation} Apply function \(\arctan{ x }\) with argument \(x\) to Eq. \ref{eq:5179630}; yields Eq. \ref{eq:8186016} \begin{equation} \theta_{\rm Brewster} = \arctan{ \left( \frac{ n_1 }{ n_2 } \right) } \label{eq:8186016} \end{equation} Eq. \ref{eq:8186016} is one of the final equations.