Generated by the Physics Derivation Graph. Eq. \ref{eq:3843242} is an initial equation. $$F = m a \label{eq:3843242}$$ Change variable $$a$$ to $$g$$ in Eq. \ref{eq:3843242}; yields Eq. \ref{eq:6779814}. $$F = m g \label{eq:6779814}$$ Change variable $$g$$ to $$g_{\rm Earth}$$ in Eq. \ref{eq:6779814}; yields Eq. \ref{eq:6086107}. $$F = m g_{\rm Earth} \label{eq:6086107}$$ Eq. \ref{eq:2737346} is an initial equation. $$F = G \frac{m_1 m_2}{x^2} \label{eq:2737346}$$ Change of variable $$m_1$$ to $$m_{\rm Earth}$$ and $$m_2$$ to $$m$$ and $$x$$ to $$r_{\rm Earth}$$ in Eq. \ref{eq:2737346}; yields Eq. \ref{eq:6771172}. $$F = G \frac{m_{\rm Earth} m}{r_{\rm Earth}^2} \label{eq:6771172}$$ LHS of Eq. \ref{eq:6771172} is equal to LHS of Eq. \ref{eq:6086107}; yields Eq. \ref{eq:7388891}. $$G \frac{m_{\rm Earth} m}{r_{\rm Earth}^2} = m g_{\rm Earth} \label{eq:7388891}$$ Divide both sides of Eq. \ref{eq:7388891} by $$m$$; yields Eq. \ref{eq:9159337}. $$G \frac{m_{\rm Earth}}{r_{\rm Earth}^2} = g_{\rm Earth} \label{eq:9159337}$$ Multiply both sides of Eq. \ref{eq:9159337} by $$\frac{r_{\rm Earth}^2}{G}$$; yields Eq. \ref{eq:9133599}. $$m_{\rm Earth} = \frac{g_{\rm Earth} r_{\rm Earth}^2}{G} \label{eq:9133599}$$ Replace constant $$g_{\rm Earth}$$ with value $$9.80665$$ and units $$m/s^2$$ in Eq. \ref{eq:9133599}; yields Eq. \ref{eq:2593741} $$m_{\rm Earth} = \frac{(9.80665 m/s^2) r_{\rm Earth}^2}{G} \label{eq:2593741}$$ Replace constant $$G$$ with value $$6.67430*10^{-11}$$ and units $$m^3 kg^{-1} s^{-2}$$ in Eq. \ref{eq:2593741}; yields Eq. \ref{eq:1218257} $$m_{\rm Earth} = \frac{(9.80665 m/s^2) r_{\rm Earth}^2}{6.67430*10^{-11}m^3 kg^{-1} s^{-2}} \label{eq:1218257}$$ Replace constant $$r_{\rm Earth}$$ with value $$6.3781*10^6$$ and units $$m$$ in Eq. \ref{eq:1218257}; yields Eq. \ref{eq:9815516} $$m_{\rm Earth} = \frac{(9.80665 m/s^2) (6.3781*10^6 m)^2}{6.67430*10^{-11}m^3 kg^{-1} s^{-2}} \label{eq:9815516}$$ Simplify Eq. \ref{eq:9815516}; yields Eq. \ref{eq:1635641}. $$m_{\rm Earth} = 5.972*10^{24} kg \label{eq:1635641}$$