MESSAGES:

Return to navigation page or list derivations

Review Newton's Law of Gravitation

step inference rule input feed output validity (as per SymPy)
17
  • ID: 111732; substitute LHS of two expressions into expression
  • number of inputs: 3; feeds: 0; outputs: 1
  • Substitute LHS of Eq.~\\ref{eq:#1} and LHS of Eq.~\\ref{eq:#2} into Eq.~\\ref{eq:#3}; yields Eq.~\\ref{eq:#4}.
recognized infrule but not yet supported
8
  • ID: 111556; substitute LHS of expr 1 into expr 2
  • number of inputs: 2; feeds: 0; outputs: 1
  • Substitute LHS of Eq.~\\ref{eq:#1} into Eq.~\\ref{eq:#2}; yields Eq.~\\ref{eq:#3}.
  1. 4820320578
    \(F_{gravitational}=F_{centripetal}\)
  1. 6026694087
    \(F_{centripetal}=m \frac{v^2}{r}\)
  1. 4267808354
    \(F_{gravitational}=m \frac{v^2}{r}\)
LHS diff is pdg0001687 - pdg0002867 RHS diff is pdg0005156*(-pdg0001357**2 + v**2)/pdg0002530
10
  • ID: 111981; declare initial expression
  • number of inputs: 0; feeds: 0; outputs: 1
  • Eq.~\\ref{eq:#1} is an initial equation.
  1. 6785303857
    \(C=2 \pi r\)
no validation is available for declarations
9
  • ID: 111981; declare initial expression
  • number of inputs: 0; feeds: 0; outputs: 1
  • Eq.~\\ref{eq:#1} is an initial equation.
  1. 3411994811
    \(v_{\rm average}=\frac{d}{t}\)
no validation is available for declarations
5
  • ID: 111104; declare assumption
  • number of inputs: 0; feeds: 0; outputs: 1
  • Eq.~\\ref{eq:#1} is an assumption.
  1. 4820320578
    \(F_{gravitational}=F_{centripetal}\)
no validation is available for declarations
19
  • ID: 111341; declare final expression
  • number of inputs: 1; feeds: 0; outputs: 0
  • Eq.~\\ref{eq:#1} is one of the final equations.
  1. 1292735067
    \(F_{gravitational}=G \frac{m_1 m_2}{r^2}\)
no validation is available for declarations
7
  • ID: 111556; substitute LHS of expr 1 into expr 2
  • number of inputs: 2; feeds: 0; outputs: 1
  • Substitute LHS of Eq.~\\ref{eq:#1} into Eq.~\\ref{eq:#2}; yields Eq.~\\ref{eq:#3}.
  1. 5345738321
    \(F=m a\)
  1. 8361238989
    \(a_{centripetal}=\frac{v^2}{r}\)
  1. 6026694087
    \(F_{centripetal}=m \frac{v^2}{r}\)
LHS diff is a_{c*(e*(n*(t*(r*(i*(p*(e*(t*(a*l)))))))))} - pdg0001687 RHS diff is (pdg0001357**2 - pdg0005156*v**2)/pdg0002530
15
  • ID: 111457; simplify
  • number of inputs: 1; feeds: 0; outputs: 1
  • Simplify Eq.~\\ref{eq:#1}; yields Eq.~\\ref{eq:#2}.
  1. 3004158505
    \(\frac{T^2}{r} F_{gravitational}=\left( \frac{4 \pi^2 m r}{T^2} \right)\frac{T^2}{r}\)
  1. 3650370389
    \(\frac{T^2}{r} F_{gravitational}=4 \pi^2 m\)
valid
11
  • ID: 111556; substitute LHS of expr 1 into expr 2
  • number of inputs: 2; feeds: 0; outputs: 1
  • Substitute LHS of Eq.~\\ref{eq:#1} into Eq.~\\ref{eq:#2}; yields Eq.~\\ref{eq:#3}.
  1. 6785303857
    \(C=2 \pi r\)
  1. 3411994811
    \(v_{\rm average}=\frac{d}{t}\)
  1. 5177311762
    \(v=\frac{2 \pi r}{T}\)
LHS diff is -pdg0001357 + pdg0006709 RHS diff is -2*pdg0002530*pdg0003141/pdg0008762 + pdg0001943/pdg0001467
3
  • ID: 111886; change variable X to Y
  • number of inputs: 1; feeds: 2; outputs: 1
  • Change variable $#1$ to $#2$ in Eq.~\\ref{eq:#3}; yields Eq.~\\ref{eq:#4}.
  1. 3876446703
    \(m\)
  1. 7905984866
    \(m_1\)
list index out of range
18
  • ID: 111457; simplify
  • number of inputs: 1; feeds: 0; outputs: 1
  • Simplify Eq.~\\ref{eq:#1}; yields Eq.~\\ref{eq:#2}.
  1. 1292735067
    \(F_{gravitational}=G \frac{m_1 m_2}{r^2}\)
list index out of range
13
  • ID: 111457; simplify
  • number of inputs: 1; feeds: 0; outputs: 1
  • Simplify Eq.~\\ref{eq:#1}; yields Eq.~\\ref{eq:#2}.
  1. 6268336290
    \(F_{gravitational}=\frac{m}{r}\left(\frac{2\pi r}{T}\right)^2\)
  1. 7672365885
    \(F_{gravitational}=\frac{4 \pi^2 m r}{T^2}\)
valid
14
  • ID: 111182; multiply both sides by
  • number of inputs: 1; feeds: 1; outputs: 1
  • Multiply both sides of Eq.~\\ref{eq:#2} by $#1$; yields Eq.~\\ref{eq:#3}.
  1. 7672365885
    \(F_{gravitational}=\frac{4 \pi^2 m r}{T^2}\)
  1. 3448601530
    \(\frac{T^2}{r}\)
  1. 3004158505
    \(\frac{T^2}{r} F_{gravitational}=\left( \frac{4 \pi^2 m r}{T^2} \right)\frac{T^2}{r}\)
LHS arithmetic error. Diff: pdg0002867*(-pdg0008762**2 + pdg0009491**2)/pdg0002530
1
  • ID: 111981; declare initial expression
  • number of inputs: 0; feeds: 0; outputs: 1
  • Eq.~\\ref{eq:#1} is an initial equation.
  1. 5345738321
    \(F=m a\)
no validation is available for declarations
6
  • ID: 111981; declare initial expression
  • number of inputs: 0; feeds: 0; outputs: 1
  • Eq.~\\ref{eq:#1} is an initial equation.
  1. 8361238989
    \(a_{centripetal}=\frac{v^2}{r}\)
no validation is available for declarations
4
  • ID: 111886; change variable X to Y
  • number of inputs: 1; feeds: 2; outputs: 1
  • Change variable $#1$ to $#2$ in Eq.~\\ref{eq:#3}; yields Eq.~\\ref{eq:#4}.
  1. 9594072504
    \(m_2\)
  1. 2346952973
    \(m\)
list index out of range
12
  • ID: 111556; substitute LHS of expr 1 into expr 2
  • number of inputs: 2; feeds: 0; outputs: 1
  • Substitute LHS of Eq.~\\ref{eq:#1} into Eq.~\\ref{eq:#2}; yields Eq.~\\ref{eq:#3}.
  1. 4267808354
    \(F_{gravitational}=m \frac{v^2}{r}\)
  1. 5177311762
    \(v=\frac{2 \pi r}{T}\)
  1. 6268336290
    \(F_{gravitational}=\frac{m}{r}\left(\frac{2\pi r}{T}\right)^2\)
LHS diff is pdg0001357 - pdg0002867 RHS diff is 2*pdg0002530*pdg0003141*(-2*pdg0003141*pdg0004851 + pdg0008762)/pdg0008762**2
16
  • ID: 111237; declare guess solution
  • number of inputs: 1; feeds: 0; outputs: 1
  • Judicious choice as a guessed solution to Eq.~\\ref{eq:#1} is Eq.~\\ref{eq:#2},
  1. 3650370389
    \(\frac{T^2}{r} F_{gravitational}=4 \pi^2 m\)
no validation is available for declarations
2
  • ID: 111457; simplify
  • number of inputs: 1; feeds: 0; outputs: 1
  • Simplify Eq.~\\ref{eq:#1}; yields Eq.~\\ref{eq:#2}.
  1. 5345738321
    \(F=m a\)
list index out of range


Hold the mouse over a node to highlight that node and its neighbors. You can zoom in/out. You can pan the image. You can move nodes by clicking and dragging.

Actions: Edit Derivation

Generate Tex file or PDF file

   xor   

Delete Derivation and all associated steps

This does not remove expressions, symbols, and operations.

timing of Neo4j queries: