Return to navigation page or list derivations

Review hyperbolic trigonometric identities

step inference rule input feed output validity (as per SymPy)
11
  • ID: 111981; declare initial expression
  • number of inputs: 0; feeds: 0; outputs: 1
  • Eq.~\\ref{eq:#1} is an initial equation.
  1. 2103023049
    \(\sin(x)=\frac{1}{2i}\left(\exp(i x)-\exp(-i x) \right)\)
no validation is available for declarations
26
  • ID: 111457; simplify
  • number of inputs: 1; feeds: 0; outputs: 1
  • Simplify Eq.~\\ref{eq:#1}; yields Eq.~\\ref{eq:#2}.
  1. 1128605625
    \({\rm sech}^2\ x + \tanh^2(x)=\frac{4}{\left(\exp(x)+\exp(-x)\right)^2} + \frac{\left(\exp(x)-\exp(-x)\right)^2}{\left(\exp(x)+\exp(-x)\right)^2}\)
  1. 4830221561
    \({\rm sech}^2\ x + \tanh^2(x)=\frac{4+\left(\exp(2x)-1-1+\exp(-2x)\right)}{\left(\exp(x)+\exp(-x)\right)^2}\)
valid
25
  • ID: 111980; add expr 1 to expr 2
  • number of inputs: 2; feeds: 0; outputs: 1
  • Add Eq.~\\ref{eq:#1} to Eq.~\\ref{eq:#2}; yields Eq.~\\ref{eq:#2}.
  1. 2121790783
    \(\tanh^2(x)=\frac{ \left(\exp(x)-\exp(-x)\right)^2}{\left(\exp(x)+\exp(-x)\right)^2}\)
  1. 3868998312
    \({\rm sech}^2\ x=\frac{4}{\left(\exp(x)+\exp(-x)\right)^2}\)
  1. 1128605625
    \({\rm sech}^2\ x + \tanh^2(x)=\frac{4}{\left(\exp(x)+\exp(-x)\right)^2} + \frac{\left(\exp(x)-\exp(-x)\right)^2}{\left(\exp(x)+\exp(-x)\right)^2}\)
valid
15
  • ID: 111981; declare initial expression
  • number of inputs: 0; feeds: 0; outputs: 1
  • Eq.~\\ref{eq:#1} is an initial equation.
  1. 4585932229
    \(\cos(x)=\frac{1}{2}\left(\exp(i x)+\exp(-i x) \right)\)
no validation is available for declarations
19
  • ID: 111556; substitute LHS of expr 1 into expr 2
  • number of inputs: 2; feeds: 0; outputs: 1
  • Substitute LHS of Eq.~\\ref{eq:#1} into Eq.~\\ref{eq:#2}; yields Eq.~\\ref{eq:#3}.
  1. 7731226616
    \({\rm sech}\ x=\frac{1}{\cosh x}\)
  1. 6404535647
    \(\cosh x=\frac{\exp(x) + \exp(-x)}{2}\)
  1. 4166155526
    \({\rm sech}\ x=\frac{2}{\exp(x)+\exp(-x)}\)
LHS diff is cosh(pdg0001464) - sech(pdg0001464) RHS diff is (exp(4*pdg0001464) - 2*exp(2*pdg0001464) + 1)*exp(-pdg0001464)/(2*(exp(2*pdg0001464) + 1))
21
  • ID: 111556; substitute LHS of expr 1 into expr 2
  • number of inputs: 2; feeds: 0; outputs: 1
  • Substitute LHS of Eq.~\\ref{eq:#1} into Eq.~\\ref{eq:#2}; yields Eq.~\\ref{eq:#3}.
  1. 1038566242
    \(\sinh x=\frac{\exp(x) - \exp(-x)}{2}\)
  1. 4872163189
    \(\tanh(x)=\frac{\sinh(x)}{\cosh(x)}\)
  1. 2902772962
    \(\tanh(x)=\frac{\frac{1}{2}\left( \exp(x)-\exp(-x) \right)}{\cosh(x)}\)
valid
27
  • ID: 111457; simplify
  • number of inputs: 1; feeds: 0; outputs: 1
  • Simplify Eq.~\\ref{eq:#1}; yields Eq.~\\ref{eq:#2}.
  1. 4830221561
    \({\rm sech}^2\ x + \tanh^2(x)=\frac{4+\left(\exp(2x)-1-1+\exp(-2x)\right)}{\left(\exp(x)+\exp(-x)\right)^2}\)
  1. 5866629429
    \({\rm sech}^2\ x + \tanh^2(x)=1\)
valid
2
  • ID: 111981; declare initial expression
  • number of inputs: 0; feeds: 0; outputs: 1
  • Eq.~\\ref{eq:#1} is an initial equation.
  1. 1038566242
    \(\sinh x=\frac{\exp(x) - \exp(-x)}{2}\)
no validation is available for declarations
12
  • ID: 111886; change variable X to Y
  • number of inputs: 1; feeds: 2; outputs: 1
  • Change variable $#1$ to $#2$ in Eq.~\\ref{eq:#3}; yields Eq.~\\ref{eq:#4}.
  1. 2103023049
    \(\sin(x)=\frac{1}{2i}\left(\exp(i x)-\exp(-i x) \right)\)
  1. 6976493023
    \(x\)
  1. 7159989263
    \(i x\)
  1. 4878728014
    \(\sin(i x)=\frac{1}{2i}\left(\exp(-x) - \exp(x) \right)\)
LHS diff is 0 RHS diff is exp(pdg0001464)/(2*pdg0004621) + exp(pdg0001464*pdg0004621**2)/(2*pdg0004621) - exp(-pdg0001464*pdg0004621**2)/(2*pdg0004621) - exp(-pdg0001464)/(2*pdg0004621)
24
  • ID: 111253; multiply expr 1 by expr 2
  • number of inputs: 2; feeds: 0; outputs: 1
  • Multiply Eq.~\\ref{eq:#1} by Eq.~\\ref{eq:#2}; yields Eq.~\\ref{eq:#3}.
  1. 4166155526
    \({\rm sech}\ x=\frac{2}{\exp(x)+\exp(-x)}\)
  1. 4166155526
    \({\rm sech}\ x=\frac{2}{\exp(x)+\exp(-x)}\)
  1. 3868998312
    \({\rm sech}^2\ x=\frac{4}{\left(\exp(x)+\exp(-x)\right)^2}\)
valid
28
  • ID: 111341; declare final expression
  • number of inputs: 1; feeds: 0; outputs: 0
  • Eq.~\\ref{eq:#1} is one of the final equations.
  1. 5866629429
    \({\rm sech}^2\ x + \tanh^2(x)=1\)
no validation is available for declarations
14
  • ID: 111182; multiply both sides by
  • number of inputs: 1; feeds: 1; outputs: 1
  • Multiply both sides of Eq.~\\ref{eq:#2} by $#1$; yields Eq.~\\ref{eq:#3}.
  1. 5323719091
    \(i \sinh x=\frac{1}{2i} \left( \exp(-x) - \exp(x) \right)\)
  1. 9885190237
    \(i\)
  1. 1038566242
    \(\sinh x=\frac{\exp(x) - \exp(-x)}{2}\)
LHS arithmetic error. Diff: (pdg0004621**2 - 1)*sinh(pdg0001464)
7
  • ID: 111457; simplify
  • number of inputs: 1; feeds: 0; outputs: 1
  • Simplify Eq.~\\ref{eq:#1}; yields Eq.~\\ref{eq:#2}.
  1. 2762326680
    \(\cosh^2 x - \sinh^2 x=\frac{1}{4}\left( \exp(2x)+1+1+\exp(-2x) - \left(\exp(2x)-1-1+\exp(-2x)\right) \right)\)
  1. 9413609246
    \(\cosh^2 x - \sinh^2 x=1\)
valid
3
  • ID: 111253; multiply expr 1 by expr 2
  • number of inputs: 2; feeds: 0; outputs: 1
  • Multiply Eq.~\\ref{eq:#1} by Eq.~\\ref{eq:#2}; yields Eq.~\\ref{eq:#3}.
  1. 1038566242
    \(\sinh x=\frac{\exp(x) - \exp(-x)}{2}\)
  1. 1038566242
    \(\sinh x=\frac{\exp(x) - \exp(-x)}{2}\)
  1. 6031385191
    \(\sinh^2 x=\left(\frac{\exp(x) - \exp(-x)}{2}\right)\left(\frac{\exp(x) - \exp(-x)}{2}\right)\)
valid
16
  • ID: 111886; change variable X to Y
  • number of inputs: 1; feeds: 2; outputs: 1
  • Change variable $#1$ to $#2$ in Eq.~\\ref{eq:#3}; yields Eq.~\\ref{eq:#4}.
  1. 4585932229
    \(\cos(x)=\frac{1}{2}\left(\exp(i x)+\exp(-i x) \right)\)
  1. 1716984328
    \(i x\)
  1. 7453225570
    \(x\)
  1. 8651044341
    \(\cos(i x)=\frac{1}{2} \left( \exp(-x) + \exp(x) \right)\)
LHS diff is cos(pdg0001464) - cos(pdg0001464*pdg0004621) RHS diff is 0
8
  • ID: 111341; declare final expression
  • number of inputs: 1; feeds: 0; outputs: 0
  • Eq.~\\ref{eq:#1} is one of the final equations.
  1. 9413609246
    \(\cosh^2 x - \sinh^2 x=1\)
no validation is available for declarations
10
  • ID: 111981; declare initial expression
  • number of inputs: 0; feeds: 0; outputs: 1
  • Eq.~\\ref{eq:#1} is an initial equation.
  1. 8418527415
    \(\sin(i x)=i \sinh(x)\)
no validation is available for declarations
22
  • ID: 111556; substitute LHS of expr 1 into expr 2
  • number of inputs: 2; feeds: 0; outputs: 1
  • Substitute LHS of Eq.~\\ref{eq:#1} into Eq.~\\ref{eq:#2}; yields Eq.~\\ref{eq:#3}.
  1. 2902772962
    \(\tanh(x)=\frac{\frac{1}{2}\left( \exp(x)-\exp(-x) \right)}{\cosh(x)}\)
  1. 6404535647
    \(\cosh x=\frac{\exp(x) + \exp(-x)}{2}\)
  1. 5349669879
    \(\tanh(x)=\frac{ \exp(x)-\exp(-x)}{\exp(x)+\exp(-x)}\)
LHS diff is cosh(pdg0001464) - tanh(pdg0001464) RHS diff is (exp(4*pdg0001464)/2 - exp(3*pdg0001464) + exp(2*pdg0001464) + exp(pdg0001464) + 1/2)*exp(-pdg0001464)/(exp(2*pdg0001464) + 1)
13
  • ID: 111355; LHS of expr 1 equals LHS of expr 2
  • number of inputs: 2; feeds: 0; outputs: 1
  • LHS of Eq.~\\ref{eq:#1} is equal to LHS of Eq.~\\ref{eq:#2}; yields Eq.~\\ref{eq:#3}.
  1. 4878728014
    \(\sin(i x)=\frac{1}{2i}\left(\exp(-x) - \exp(x) \right)\)
  1. 8418527415
    \(\sin(i x)=i \sinh(x)\)
  1. 5323719091
    \(i \sinh x=\frac{1}{2i} \left( \exp(-x) - \exp(x) \right)\)
input diff is 0 diff is -pdg0004621*sinh(pdg0001464) - exp(pdg0001464)/(2*pdg0004621) + exp(-pdg0001464)/(2*pdg0004621) diff is pdg0004621*sinh(pdg0001464) + exp(pdg0001464)/(2*pdg0004621) - exp(-pdg0001464)/(2*pdg0004621)
20
  • ID: 111981; declare initial expression
  • number of inputs: 0; feeds: 0; outputs: 1
  • Eq.~\\ref{eq:#1} is an initial equation.
  1. 4872163189
    \(\tanh(x)=\frac{\sinh(x)}{\cosh(x)}\)
no validation is available for declarations
17
  • ID: 111355; LHS of expr 1 equals LHS of expr 2
  • number of inputs: 2; feeds: 0; outputs: 1
  • LHS of Eq.~\\ref{eq:#1} is equal to LHS of Eq.~\\ref{eq:#2}; yields Eq.~\\ref{eq:#3}.
  1. 8747785338
    \(\cos(i x)=\cosh(x)\)
  1. 8651044341
    \(\cos(i x)=\frac{1}{2} \left( \exp(-x) + \exp(x) \right)\)
  1. 6404535647
    \(\cosh x=\frac{\exp(x) + \exp(-x)}{2}\)
valid
18
  • ID: 111981; declare initial expression
  • number of inputs: 0; feeds: 0; outputs: 1
  • Eq.~\\ref{eq:#1} is an initial equation.
  1. 7731226616
    \({\rm sech}\ x=\frac{1}{\cosh x}\)
no validation is available for declarations
23
  • ID: 111253; multiply expr 1 by expr 2
  • number of inputs: 2; feeds: 0; outputs: 1
  • Multiply Eq.~\\ref{eq:#1} by Eq.~\\ref{eq:#2}; yields Eq.~\\ref{eq:#3}.
  1. 5349669879
    \(\tanh(x)=\frac{ \exp(x)-\exp(-x)}{\exp(x)+\exp(-x)}\)
  1. 5349669879
    \(\tanh(x)=\frac{ \exp(x)-\exp(-x)}{\exp(x)+\exp(-x)}\)
  1. 2121790783
    \(\tanh^2(x)=\frac{ \left(\exp(x)-\exp(-x)\right)^2}{\left(\exp(x)+\exp(-x)\right)^2}\)
valid
6
  • ID: 111457; simplify
  • number of inputs: 1; feeds: 0; outputs: 1
  • Simplify Eq.~\\ref{eq:#1}; yields Eq.~\\ref{eq:#2}.
  1. 8563535636
    \(\cosh^2 x - \sinh^2 x=\left(\frac{\exp(x) + \exp(-x)}{2}\right)\left(\frac{\exp(x) + \exp(-x)}{2}\right) - \left(\frac{\exp(x) - \exp(-x)}{2}\right)\left(\frac{\exp(x) - \exp(-x)}{2}\right)\)
  1. 2762326680
    \(\cosh^2 x - \sinh^2 x=\frac{1}{4}\left( \exp(2x)+1+1+\exp(-2x) - \left(\exp(2x)-1-1+\exp(-2x)\right) \right)\)
valid
9
  • ID: 111981; declare initial expression
  • number of inputs: 0; feeds: 0; outputs: 1
  • Eq.~\\ref{eq:#1} is an initial equation.
  1. 8747785338
    \(\cos(i x)=\cosh(x)\)
no validation is available for declarations
5
  • ID: 111222; subtract expr 1 from expr 2
  • number of inputs: 2; feeds: 0; outputs: 1
  • Subtract Eq.~\\ref{eq:#1} from Eq.~\\ref{eq:#2}; yields Eq.~\\ref{eq:#2}.
  1. 6031385191
    \(\sinh^2 x=\left(\frac{\exp(x) - \exp(-x)}{2}\right)\left(\frac{\exp(x) - \exp(-x)}{2}\right)\)
  1. 8532702080
    \(\cosh^2 x=\left(\frac{\exp(x) + \exp(-x)}{2}\right)\left(\frac{\exp(x) + \exp(-x)}{2}\right)\)
  1. 8563535636
    \(\cosh^2 x - \sinh^2 x=\left(\frac{\exp(x) + \exp(-x)}{2}\right)\left(\frac{\exp(x) + \exp(-x)}{2}\right) - \left(\frac{\exp(x) - \exp(-x)}{2}\right)\left(\frac{\exp(x) - \exp(-x)}{2}\right)\)
valid
4
  • ID: 111253; multiply expr 1 by expr 2
  • number of inputs: 2; feeds: 0; outputs: 1
  • Multiply Eq.~\\ref{eq:#1} by Eq.~\\ref{eq:#2}; yields Eq.~\\ref{eq:#3}.
  1. 6404535647
    \(\cosh x=\frac{\exp(x) + \exp(-x)}{2}\)
  1. 6404535647
    \(\cosh x=\frac{\exp(x) + \exp(-x)}{2}\)
  1. 8532702080
    \(\cosh^2 x=\left(\frac{\exp(x) + \exp(-x)}{2}\right)\left(\frac{\exp(x) + \exp(-x)}{2}\right)\)
valid
1
  • ID: 111981; declare initial expression
  • number of inputs: 0; feeds: 0; outputs: 1
  • Eq.~\\ref{eq:#1} is an initial equation.
  1. 6404535647
    \(\cosh x=\frac{\exp(x) + \exp(-x)}{2}\)
no validation is available for declarations


Hold the mouse over a node to highlight that node and its neighbors. You can zoom in/out. You can pan the image. You can move nodes by clicking and dragging.

Actions: Edit Derivation

Generate Tex file or PDF file

   xor   

Delete Derivation and all associated steps

This does not remove expressions, symbols, and operations.

timing of Neo4j queries: