Physics Derivation Graph navigation Sign in

## review derivation: Langmuir Adsorption

This page contains three views of the steps in the derivation: d3js, graphviz PNG, and a table.

Hold the mouse over a node to highlight that node and its neighbors. You can zoom in/out. You can pan the image. You can move nodes by clicking and dragging.

Notes for this derivation:
from https://arxiv.org/pdf/2210.12150.pdf

Options
Alternate views of this derivation:
Edit this content:

To edit a step, click on the number in the "Index" column in the table below

Clicking on the step index will take you to the page where you can edit that step.

Index Inference Rule Input latex Feeds latex Output latex step validity dimension check unit check notes
10 divide both sides by
1. 3488423948; locally 2575148:
$$k_{\rm adsorption} p_A [S] = k_{\rm desorption} [A_{\rm adsorption}]$$
$$pdg_{6850} pdg_{9046} pdg_{9067} = pdg_{4940} pdg_{8379}$$
1. 1945487024:
$$p_A [S]$$
$$pdg_{9046} pdg_{9067}$$
1. 5085809757; locally 2552367:
$$\frac{k_{\rm adsorption}}{k_{\rm desorption}} = \frac{[A_{\rm adsorption}]}{p_A [S]}$$
$$\frac{pdg_{6850}}{pdg_{8379}} = \frac{pdg_{4940}}{pdg_{9046} pdg_{9067}}$$
LHS diff is pdg6850 - pdg6850/pdg8379 RHS diff is pdg4940*(pdg8379 - 1)/(pdg9046*pdg9067) 3488423948:
5085809757:
3488423948:
5085809757:
11 declare initial expr
1. 7924063906; locally 5044727:
$$K_{equilibrium} = \frac{k_{\rm adsorption}}{k_{\rm desorption}}$$
$$pdg_{4933} = \frac{pdg_{6850}}{pdg_{8379}}$$
no validation is available for declarations 7924063906:
7924063906:
definition of equilibrium
6 divide both sides by
1. 3488423948; locally 2575148:
$$k_{\rm adsorption} p_A [S] = k_{\rm desorption} [A_{\rm adsorption}]$$
$$pdg_{6850} pdg_{9046} pdg_{9067} = pdg_{4940} pdg_{8379}$$
1. 8162179726:
$$k_{\rm adsorption} p_A$$
$$pdg_{6850} pdg_{9046}$$
1. 9562264720; locally 5003983:
$$[S] = \frac{k_{\rm desorption} [A_{\rm adsorption}]}{k_{\rm adsorption} p_A}$$
$$pdg_{9067} = \frac{pdg_{4940} pdg_{8379}}{pdg_{6850} pdg_{9046}}$$
valid 3488423948:
9562264720:
3488423948:
9562264720:
16 raise both sides to power
1. 2114909846; locally 7042641:
$$\theta_A = \frac{[A_{\rm adsorption}]}{[S_0]}$$
$$pdg_{1791} = \frac{pdg_{4940}}{pdg_{3037}}$$
1. 7564010952:
$$-1$$
$$-1$$
1. 8131665171; locally 4039036:
$$\frac{1}{\theta_A} = \frac{[S_0]}{[A_{\rm adsorption}]}$$
$$\frac{1}{pdg_{1791}} = \frac{pdg_{3037}}{pdg_{4940}}$$
no check is performed 2114909846:
8131665171:
2114909846:
8131665171:
12 raise both sides to power
1. 7924063906; locally 5044727:
$$K_{equilibrium} = \frac{k_{\rm adsorption}}{k_{\rm desorption}}$$
$$pdg_{4933} = \frac{pdg_{6850}}{pdg_{8379}}$$
1. 5516739892:
$$-1$$
$$-1$$
1. 6240546932; locally 8620451:
$$\frac{1}{K_{equilibrium}} = \frac{k_{\rm desorption}}{k_{\rm adsorption}}$$
$$\frac{1}{pdg_{4933}} = \frac{pdg_{8379}}{pdg_{6850}}$$
no check is performed 7924063906:
6240546932:
7924063906:
6240546932:
18 change variable X to Y
1. 7928111771; locally 8754546:
$$\frac{1}{\theta_A} = \frac{1}{K_{\rm equilibrium} p_A} + 1$$
$$\frac{1}{pdg_{1791}} = 1 + \frac{1}{pdg_{4933} pdg_{9046}}$$
1. 6346902704:
$$1$$
$$1$$
2. 7630953440:
$$\frac{K_{\rm equilibrium} p_A}{K_{\rm equilibrium} p_A}$$
$$1$$
1. 7267424860; locally 4829867:
$$\frac{1}{\theta_A} = \frac{1+(K_{\rm equilibrium}\ p_A)}{K_{\rm equilibrium}\ p_A}$$
$$\frac{1}{pdg_{1791}} = \frac{pdg_{4933} pdg_{9046} + 1}{pdg_{4933} pdg_{9046}}$$
valid 7928111771:
7267424860:
7928111771:
7267424860:
14 divide both sides by
1. 7517073655; locally 4487508:
$$[S_0] = \left(\frac{1}{K_{\rm equilibrium}} \frac{1}{p_A} + 1\right)[A_{\rm adsorption}]$$
$$pdg_{3037} = pdg_{4940} \left(1 + \frac{1}{pdg_{4933} pdg_{9046}}\right)$$
1. 5426418187:
$$[A_{\rm adsorption}]$$
$$pdg_{4940}$$
1. 6457999644; locally 5382248:
$$\frac{[S_0]}{[A_{\rm adsorption}]} = \frac{1}{K_{\rm equilibrium}} \frac{1}{p_A} + 1$$
$$\frac{pdg_{3037}}{pdg_{4940}} = 1 + \frac{1}{pdg_{4933} pdg_{9046}}$$
valid 7517073655:
6457999644:
7517073655:
6457999644:
17 substitute RHS of expr 1 into expr 2
1. 8131665171; locally 4039036:
$$\frac{1}{\theta_A} = \frac{[S_0]}{[A_{\rm adsorption}]}$$
$$\frac{1}{pdg_{1791}} = \frac{pdg_{3037}}{pdg_{4940}}$$
2. 6457999644; locally 5382248:
$$\frac{[S_0]}{[A_{\rm adsorption}]} = \frac{1}{K_{\rm equilibrium}} \frac{1}{p_A} + 1$$
$$\frac{pdg_{3037}}{pdg_{4940}} = 1 + \frac{1}{pdg_{4933} pdg_{9046}}$$
1. 7928111771; locally 8754546:
$$\frac{1}{\theta_A} = \frac{1}{K_{\rm equilibrium} p_A} + 1$$
$$\frac{1}{pdg_{1791}} = 1 + \frac{1}{pdg_{4933} pdg_{9046}}$$
valid 8131665171:
6457999644:
7928111771:
8131665171:
6457999644:
7928111771:
19 raise both sides to power
1. 7267424860; locally 4829867:
$$\frac{1}{\theta_A} = \frac{1+(K_{\rm equilibrium}\ p_A)}{K_{\rm equilibrium}\ p_A}$$
$$\frac{1}{pdg_{1791}} = \frac{pdg_{4933} pdg_{9046} + 1}{pdg_{4933} pdg_{9046}}$$
1. 3911081515:
$$-1$$
$$-1$$
1. 4689334676; locally 8722827:
$$\theta_A = \frac{K_{\rm equilibrium}\ p_A}{1+K_{\rm equilibrium}\ p_A}$$
$$pdg_{1791} = \frac{pdg_{4933} pdg_{9046}}{pdg_{4933} pdg_{9046} + 1}$$
no check is performed 7267424860:
4689334676:
7267424860:
4689334676:
3 declare assumption
1. 6783009163; locally 9492936:
$$r_{\rm adsorption} = r_{\rm desorption}$$
$$pdg_{6687} = pdg_{1966}$$
no validation is available for declarations 6783009163:
6783009163:
5 substitute LHS of expr 1 into expr 2
1. 6955192897; locally 8859060:
$$r_{\rm desorption} = k_{\rm desorption} [A_{\rm adsorption}]$$
$$pdg_{1966} = pdg_{4940} pdg_{8379}$$
2. 3507029294; locally 1615903:
$$k_{\rm adsorption} p_A [S] = r_{\rm desorption}$$
$$pdg_{6850} pdg_{9046} pdg_{9067} = pdg_{1966}$$
1. 3488423948; locally 2575148:
$$k_{\rm adsorption} p_A [S] = k_{\rm desorption} [A_{\rm adsorption}]$$
$$pdg_{6850} pdg_{9046} pdg_{9067} = pdg_{4940} pdg_{8379}$$
valid 6955192897:
3507029294:
3488423948:
6955192897:
3507029294:
3488423948:
15 declare initial expr
1. 2114909846; locally 7042641:
$$\theta_A = \frac{[A_{\rm adsorption}]}{[S_0]}$$
$$pdg_{1791} = \frac{pdg_{4940}}{pdg_{3037}}$$
no validation is available for declarations 2114909846:
2114909846:
4 substitute LHS of expr 1 into expr 2
1. 3736177473; locally 7133735:
$$r_{\rm adsorption} = k_{\rm adsorption} p_A [S]$$
$$pdg_{6687} = pdg_{6850} pdg_{9046} pdg_{9067}$$
2. 6783009163; locally 9492936:
$$r_{\rm adsorption} = r_{\rm desorption}$$
$$pdg_{6687} = pdg_{1966}$$
1. 3507029294; locally 1615903:
$$k_{\rm adsorption} p_A [S] = r_{\rm desorption}$$
$$pdg_{6850} pdg_{9046} pdg_{9067} = pdg_{1966}$$
valid 3736177473: inconsistent dimensions
6783009163:
3507029294:
3736177473: N/A
6783009163:
3507029294:
2 declare initial expr
1. 6955192897; locally 8859060:
$$r_{\rm desorption} = k_{\rm desorption} [A_{\rm adsorption}]$$
$$pdg_{1966} = pdg_{4940} pdg_{8379}$$
no validation is available for declarations 6955192897:
6955192897:
20 declare final expr
1. 4689334676; locally 8722827:
$$\theta_A = \frac{K_{\rm equilibrium}\ p_A}{1+K_{\rm equilibrium}\ p_A}$$
$$pdg_{1791} = \frac{pdg_{4933} pdg_{9046}}{pdg_{4933} pdg_{9046} + 1}$$
no validation is available for declarations 4689334676:
4689334676:
7 declare initial expr
1. 3599953931; locally 7265984:
$$[S_0] = [S] + [A_{\rm adsorption}]$$
$$pdg_{3037} = pdg_{4940} + pdg_{9067}$$
no validation is available for declarations 3599953931:
3599953931:
The concentration of all sites by summing the concentration of free sites [S] and occupied sites
8 substitute LHS of expr 1 into expr 2
1. 9562264720; locally 5003983:
$$[S] = \frac{k_{\rm desorption} [A_{\rm adsorption}]}{k_{\rm adsorption} p_A}$$
$$pdg_{9067} = \frac{pdg_{4940} pdg_{8379}}{pdg_{6850} pdg_{9046}}$$
2. 3599953931; locally 7265984:
$$[S_0] = [S] + [A_{\rm adsorption}]$$
$$pdg_{3037} = pdg_{4940} + pdg_{9067}$$
1. 4301729661; locally 1337055:
$$[S_0] = \frac{[A_{\rm adsorption}]}{\left( \frac{k_{\rm adsorption}}{k_{\rm desorption}} \right) p_A} + [A_{\rm adsorption}]$$
$$pdg_{3037} = pdg_{4940} + \frac{pdg_{4940} pdg_{8379}}{pdg_{6850} pdg_{9046}}$$
valid 9562264720:
3599953931:
4301729661:
9562264720:
3599953931:
4301729661:
9 factor out X
1. 4301729661; locally 1337055:
$$[S_0] = \frac{[A_{\rm adsorption}]}{\left( \frac{k_{\rm adsorption}}{k_{\rm desorption}} \right) p_A} + [A_{\rm adsorption}]$$
$$pdg_{3037} = pdg_{4940} + \frac{pdg_{4940} pdg_{8379}}{pdg_{6850} pdg_{9046}}$$
1. 1268845856:
$$[A_{\rm adsorption}]$$
$$pdg_{4940}$$
1. 2168306601; locally 9195751:
$$[S_0] = \left(\frac{k_{\rm desorption}}{k_{\rm adsorption}} \frac{1}{p_A} + 1\right)[A_{\rm adsorption}]$$
$$pdg_{3037} = pdg_{4940} \left(1 + \frac{pdg_{8379}}{pdg_{6850} pdg_{9046}}\right)$$
valid 4301729661:
2168306601:
4301729661:
2168306601:
13 substitute RHS of expr 1 into expr 2
1. 6240546932; locally 8620451:
$$\frac{1}{K_{equilibrium}} = \frac{k_{\rm desorption}}{k_{\rm adsorption}}$$
$$\frac{1}{pdg_{4933}} = \frac{pdg_{8379}}{pdg_{6850}}$$
2. 2168306601; locally 9195751:
$$[S_0] = \left(\frac{k_{\rm desorption}}{k_{\rm adsorption}} \frac{1}{p_A} + 1\right)[A_{\rm adsorption}]$$
$$pdg_{3037} = pdg_{4940} \left(1 + \frac{pdg_{8379}}{pdg_{6850} pdg_{9046}}\right)$$
1. 7517073655; locally 4487508:
$$[S_0] = \left(\frac{1}{K_{\rm equilibrium}} \frac{1}{p_A} + 1\right)[A_{\rm adsorption}]$$
$$pdg_{3037} = pdg_{4940} \left(1 + \frac{1}{pdg_{4933} pdg_{9046}}\right)$$
valid 6240546932:
2168306601:
7517073655:
6240546932:
2168306601:
7517073655:
1 declare initial expr
1. 3736177473; locally 7133735:
$$r_{\rm adsorption} = k_{\rm adsorption} p_A [S]$$
$$pdg_{6687} = pdg_{6850} pdg_{9046} pdg_{9067}$$
no validation is available for declarations 3736177473: inconsistent dimensions
3736177473: N/A
Physics Derivation Graph: Steps for Langmuir Adsorption

## Symbols for this derivation

See also all 227 symbols
symbol ID category latex scope dimension name value Used in derivations references
9067 variable [S]
$$[S]$$
real
• amount of substance: 1
• length: -2
concentration of free sites in number per square meter
7
1966 variable r_{\rm desorption}
$$r_{\rm desorption}$$
real
• time: -1
rate of desorption
3
9046 variable p_A
$$p_A$$
real dimensionless partial pressure of A over the surface
15
6850 variable k_{\rm adsorption}
$$k_{\rm adsorption}$$
real dimensionless constant of forward adsorption reaction
10
1791 variable \theta_A
$$\theta_A$$
real dimensionless the fraction of the surface sites covered with A
5
6687 variable r_{\rm adsorption}
$$r_{\rm adsorption}$$
real
• time: -1
rate of adsorption
2
3037 variable [S_0]
$$[S_0]$$
real
• amount of substance: 1
total number of sites
7
8379 variable k_{\rm desorption}
$$k_{\rm desorption}$$
real dimensionless constant of backward desorption reaction
8
4940 variable [A_{\rm adsorption}]
$$[A_{\rm adsorption}]$$
real
• amount of substance: 1
• length: 2
surface concentration of A in molecules per square meter
13
4933 variable K_{\rm equilibrium}
$$K_{\rm equilibrium}$$
real dimensionless constant for equilibrium when rate of adsorption equals the rate of desorption
8
MESSAGE:
• local variable 'all_df' referenced before assignment