## Roadmap for Formal Mathematical Physics Content

 Explanation: Each step in the Physics Derivation Graph can be validated using a Computer Algebra System. The Physics Derivation Graph uses Sympy. Who does this work: human content creator Motive for doing this work: confidence in correctness of steps. Navigation: lecture video hand-written notes Latex document Content tags tags for sections and words and expressions concepts to variables all steps derivation graph replace symbols with numeric ID validation of steps validation of dimension proof of inference rule Back to layers overview

The following is from the Physics Derivation Graph "latex": "W_{\\rm to\\ system} = \\frac{G m_1 m_2}{r}",
"AST": "Equality(Symbol('Wtosystem'), Mul(Pow(Symbol('r'), Integer(-1)), Mul(Symbol('G'), Mul(Symbol('m1'), Symbol('m2')))))",

    "latex": "\\Delta KE = KE_{\\rm final} - KE_{\\rm initial}",
"AST": "Equality(Symbol('DeltaKE'), Add(Symbol('KEfinal'), Mul(Integer(-1), Symbol('KEinitial'))))",

    "latex": "KE_{\\rm initial} = \\frac{1}{2} m_1 v_{\\rm initial}^2",
"AST": "Equality(Symbol('KEinitial'), Mul(Pow(Integer(2), Integer(-1)), Mul(Symbol('m1'), Pow(Symbol('vinitial'), Integer(2)))))",