Roadmap for Formal Mathematical Physics Content

 

Explanation: Each step in the Physics Derivation Graph can be validated using a Computer Algebra System.
The Physics Derivation Graph uses Sympy.

Who does this work: human content creator

Motive for doing this work: confidence in correctness of steps.

Navigation:
  1. lecture video
  2. hand-written notes
  3. Latex document
  4. Content tags
  5. tags for sections and words and expressions
  6. concepts to variables
  7. all steps
  8. derivation graph
  9. replace symbols with numeric ID
  10. validation of steps
  11. validation of dimension
  12. proof of inference rule
Back to layers overview

The following is from the Physics Derivation Graph

    "latex": "W_{\\rm to\\ system} = \\frac{G m_1 m_2}{r}",
    "AST": "Equality(Symbol('Wtosystem'), Mul(Pow(Symbol('r'), Integer(-1)), Mul(Symbol('G'), Mul(Symbol('m1'), Symbol('m2')))))",
    
    "latex": "\\Delta KE = KE_{\\rm final} - KE_{\\rm initial}",
    "AST": "Equality(Symbol('DeltaKE'), Add(Symbol('KEfinal'), Mul(Integer(-1), Symbol('KEinitial'))))",
    "latex": "KE_{\\rm initial} = \\frac{1}{2} m_1 v_{\\rm initial}^2",
    "AST": "Equality(Symbol('KEinitial'), Mul(Pow(Integer(2), Integer(-1)), Mul(Symbol('m1'), Pow(Symbol('vinitial'), Integer(2)))))",