This page contains three views of the steps in the derivation: d3js, graphviz PNG, and a table.
  
    | Index | Inference Rule | Input latex | Feeds latex | Output latex | step validity | dimension check | unit check | notes | 
  
  
    | 6 | divide both sides by | 
        
        
          
          4742644828; locally 2939484: \(\exp(i x)+\exp(-i x) = 2 \cos(x)\)
 \(e^{pdg_{1464} pdg_{4621}} + e^{- pdg_{1464} pdg_{4621}} = 2 \cos{\left(pdg_{1464} \right)}\)
 | 
        
          
          0004829194: \(2\)
 \(2\)
 | 
        
        
          
          3829492824; locally 4383592: \(\frac{1}{2}\left(\exp(i x)+\exp(-i x) \right) = \cos(x)\)
 \(\frac{e^{pdg_{1464} pdg_{4621}}}{2} + \frac{e^{- pdg_{1464} pdg_{4621}}}{2} = \cos{\left(pdg_{1464} \right)}\)
 | valid | 4742644828: 3829492824:
 
 | 4742644828: 3829492824:
 
 |  | 
  
  
    | 8 | declare final expr | 
        
        
          
          4585932229; locally 4849888: \(\cos(x) = \frac{1}{2}\left(\exp(i x)+\exp(-i x) \right)\)
 \(\cos{\left(pdg_{1464} \right)} = \frac{e^{pdg_{1464} pdg_{4621}}}{2} + \frac{e^{- pdg_{1464} pdg_{4621}}}{2}\)
          
          2103023049; locally 4849959: \(\sin(x) = \frac{1}{2i}\left(\exp(i x)-\exp(-i x) \right)\)
 \(\sin{\left(pdg_{1464} \right)} = \frac{e^{pdg_{1464} pdg_{4621}} - e^{- pdg_{1464} pdg_{4621}}}{2 pdg_{4621}}\)
 | 
        
       | 
        
       | no validation is available for declarations | 4585932229: 2103023049:
 
 | 4585932229: 2103023049:
 
 |  | 
  
  
    | 11 | divide both sides by | 
        
        
          
          3942849294; locally 4825483: \(\exp(i x)-\exp(-i x) = 2 i \sin(x)\)
 \(e^{pdg_{1464} pdg_{4621}} - e^{- pdg_{1464} pdg_{4621}} = 2 pdg_{4621} \sin{\left(pdg_{1464} \right)}\)
 | 
        
          
          0001921933: \(2 i\)
 \(2 pdg_{4621}\)
 | 
        
        
          
          4843995999; locally 1133483: \(\frac{1}{2 i}\left(\exp(i x)-\exp(-i x) \right) = \sin(x)\)
 \(\frac{e^{pdg_{1464} pdg_{4621}} - e^{- pdg_{1464} pdg_{4621}}}{2 pdg_{4621}} = \sin{\left(pdg_{1464} \right)}\)
 | valid | 3942849294: 4843995999:
 
 | 3942849294: 4843995999:
 
 |  | 
  
  
    | 10 | add expr 1 to expr 2 | 
        
        
          
          4938429483; locally 8888888: \(\exp(i x) = \cos(x)+i \sin(x)\)
 \(e^{pdg_{1464} pdg_{4621}} = pdg_{4621} \sin{\left(pdg_{1464} \right)} + \cos{\left(pdg_{1464} \right)}\)
          
          2123139121; locally 3194924: \(-\exp(-i x) = -\cos(x)+i \sin(x)\)
 \(- e^{- pdg_{1464} pdg_{4621}} = pdg_{4621} \sin{\left(pdg_{1464} \right)} - \cos{\left(pdg_{1464} \right)}\)
 | 
        
       | 
        
        
          
          3942849294; locally 4825483: \(\exp(i x)-\exp(-i x) = 2 i \sin(x)\)
 \(e^{pdg_{1464} pdg_{4621}} - e^{- pdg_{1464} pdg_{4621}} = 2 pdg_{4621} \sin{\left(pdg_{1464} \right)}\)
 | valid | 4938429483: 2123139121:
 3942849294:
 
 | 4938429483: 2123139121:
 3942849294:
 
 |  | 
  
  
    | 7 | swap LHS with RHS | 
        
        
          
          3829492824; locally 4383592: \(\frac{1}{2}\left(\exp(i x)+\exp(-i x) \right) = \cos(x)\)
 \(\frac{e^{pdg_{1464} pdg_{4621}}}{2} + \frac{e^{- pdg_{1464} pdg_{4621}}}{2} = \cos{\left(pdg_{1464} \right)}\)
 | 
        
       | 
        
        
          
          4585932229; locally 4849888: \(\cos(x) = \frac{1}{2}\left(\exp(i x)+\exp(-i x) \right)\)
 \(\cos{\left(pdg_{1464} \right)} = \frac{e^{pdg_{1464} pdg_{4621}}}{2} + \frac{e^{- pdg_{1464} pdg_{4621}}}{2}\)
 | valid | 3829492824: 4585932229:
 
 | 3829492824: 4585932229:
 
 |  | 
  
  
    | 5 | add expr 1 to expr 2 | 
        
        
          
          4938429483; locally 8888888: \(\exp(i x) = \cos(x)+i \sin(x)\)
 \(e^{pdg_{1464} pdg_{4621}} = pdg_{4621} \sin{\left(pdg_{1464} \right)} + \cos{\left(pdg_{1464} \right)}\)
          
          4938429484; locally 8888883: \(\exp(-i x) = \cos(x)-i \sin(x)\)
 \(e^{- pdg_{1464} pdg_{4621}} = - pdg_{4621} \sin{\left(pdg_{1464} \right)} + \cos{\left(pdg_{1464} \right)}\)
 | 
        
       | 
        
        
          
          4742644828; locally 2939484: \(\exp(i x)+\exp(-i x) = 2 \cos(x)\)
 \(e^{pdg_{1464} pdg_{4621}} + e^{- pdg_{1464} pdg_{4621}} = 2 \cos{\left(pdg_{1464} \right)}\)
 | valid | 4938429483: 4938429484:
 4742644828:
 
 | 4938429483: 4938429484:
 4742644828:
 
 |  | 
  
  
    | 9 | multiply both sides by | 
        
        
          
          4938429484; locally 8888883: \(\exp(-i x) = \cos(x)-i \sin(x)\)
 \(e^{- pdg_{1464} pdg_{4621}} = - pdg_{4621} \sin{\left(pdg_{1464} \right)} + \cos{\left(pdg_{1464} \right)}\)
 | 
        
          
          0003747849: \(-1\)
 \(-1\)
 | 
        
        
          
          2123139121; locally 3194924: \(-\exp(-i x) = -\cos(x)+i \sin(x)\)
 \(- e^{- pdg_{1464} pdg_{4621}} = pdg_{4621} \sin{\left(pdg_{1464} \right)} - \cos{\left(pdg_{1464} \right)}\)
 | valid | 4938429484: 2123139121:
 
 | 4938429484: 2123139121:
 
 |  | 
  
  
    | 2 | change variable X to Y | 
        
        
          
          4938429483; locally 8888888: \(\exp(i x) = \cos(x)+i \sin(x)\)
 \(e^{pdg_{1464} pdg_{4621}} = pdg_{4621} \sin{\left(pdg_{1464} \right)} + \cos{\left(pdg_{1464} \right)}\)
 | 
        
          
          0002393922: \(x\)
 \(pdg_{1464}\)
 
          0003949052: \(-x\)
 \(- pdg_{1464}\)
 | 
        
        
          
          2394853829; locally 8888881: \(\exp(-i x) = \cos(-x)+i \sin(-x)\)
 \(e^{- pdg_{1464} pdg_{4621}} = - pdg_{4621} \sin{\left(pdg_{1464} \right)} + \cos{\left(pdg_{1464} \right)}\)
 | valid | 4938429483: 2394853829:
        error for dim with 2394853829
 
 | 4938429483: 2394853829:
        N/A
 
 |  | 
  
  
    | 12 | swap LHS with RHS | 
        
        
          
          4843995999; locally 1133483: \(\frac{1}{2 i}\left(\exp(i x)-\exp(-i x) \right) = \sin(x)\)
 \(\frac{e^{pdg_{1464} pdg_{4621}} - e^{- pdg_{1464} pdg_{4621}}}{2 pdg_{4621}} = \sin{\left(pdg_{1464} \right)}\)
 | 
        
       | 
        
        
          
          2103023049; locally 4849959: \(\sin(x) = \frac{1}{2i}\left(\exp(i x)-\exp(-i x) \right)\)
 \(\sin{\left(pdg_{1464} \right)} = \frac{e^{pdg_{1464} pdg_{4621}} - e^{- pdg_{1464} pdg_{4621}}}{2 pdg_{4621}}\)
 | valid | 4843995999: 2103023049:
 
 | 4843995999: 2103023049:
 
 |  | 
  
  
    | 4 | function is odd | 
        
        
          
          4938429482; locally 8888882: \(\exp(-i x) = \cos(x)+i \sin(-x)\)
 \(e^{- pdg_{1464} pdg_{4621}} = - pdg_{4621} \sin{\left(pdg_{1464} \right)} + \cos{\left(pdg_{1464} \right)}\)
 | 
        
          
          0003919391: \(x\)
 \(pdg_{1464}\)
 
          0003981813: \(-\sin(x)\)
 \(- \sin{\left(pdg_{1464} \right)}\)
 
          0002919191: \(\sin(-x)\)
 \(- \sin{\left(pdg_{1464} \right)}\)
 | 
        
        
          
          4938429484; locally 8888883: \(\exp(-i x) = \cos(x)-i \sin(x)\)
 \(e^{- pdg_{1464} pdg_{4621}} = - pdg_{4621} \sin{\left(pdg_{1464} \right)} + \cos{\left(pdg_{1464} \right)}\)
 | no check performed | 4938429482:
        error for dim with 4938429482 4938429484:
 
 | 4938429482:
        N/A 4938429484:
 
 |  | 
  
  
    | 1 | declare initial expr | 
        
       | 
        
       | 
        
        
          
          4938429483; locally 8888888: \(\exp(i x) = \cos(x)+i \sin(x)\)
 \(e^{pdg_{1464} pdg_{4621}} = pdg_{4621} \sin{\left(pdg_{1464} \right)} + \cos{\left(pdg_{1464} \right)}\)
 | no validation is available for declarations | 4938429483: 
 | 4938429483: 
 |  | 
  
  
    | 3 | function is even | 
        
        
          
          2394853829; locally 8888881: \(\exp(-i x) = \cos(-x)+i \sin(-x)\)
 \(e^{- pdg_{1464} pdg_{4621}} = - pdg_{4621} \sin{\left(pdg_{1464} \right)} + \cos{\left(pdg_{1464} \right)}\)
 | 
        
          
          0004849392: \(x\)
 \(pdg_{1464}\)
 
          0001030901: \(\cos(x)\)
 \(\cos{\left(pdg_{1464} \right)}\)
 
          0003413423: \(\cos(-x)\)
 \(\cos{\left(pdg_{1464} \right)}\)
 | 
        
        
          
          4938429482; locally 8888882: \(\exp(-i x) = \cos(x)+i \sin(-x)\)
 \(e^{- pdg_{1464} pdg_{4621}} = - pdg_{4621} \sin{\left(pdg_{1464} \right)} + \cos{\left(pdg_{1464} \right)}\)
 | no check performed | 2394853829:
        error for dim with 2394853829 4938429482:
        error for dim with 4938429482
 
 | 2394853829:
        N/A 4938429482:
        N/A
 
 |  | 
  
  
    
      Physics Derivation Graph: Steps for Euler equation: trigonometric relations
    
  
Clicking on the step index will take you to the page where you can edit that step.