Physics Derivation Graph navigation Sign in

review derivation: electric field wave equation: from time dependent to time independent

This page contains three views of the steps in the derivation: d3js, graphviz PNG, and a table.


Hold the mouse over a node to highlight that node and its neighbors. You can zoom in/out. You can pan the image. You can move nodes by clicking and dragging.

Notes for this derivation:

Options
Alternate views of this derivation:
Edit this content:    

To edit a step, click on the number in the "Index" column in the table below

Clicking on the step index will take you to the page where you can edit that step.

Index Inference Rule Input latex Feeds latex Output latex step validity dimension check unit check notes
5 substitute LHS of expr 1 into expr 2
  1. 9499428242; locally 3994928:
    \(E( \vec{r},t) = E( \vec{r})\exp(i \omega t)\)
    \(\operatorname{pdg}_{6238}{\left(pdg_{9472},pdg_{1467} \right)} = \operatorname{pdg}_{2718}{\left(pdg_{1467} pdg_{2321} pdg_{4621} \right)} \operatorname{pdg}_{6238}{\left(pdg_{9472} \right)}\)
  2. 9394939493; locally 3839493:
    \(\nabla^2 E( \vec{r},t) = \mu_0 \epsilon_0 \frac{\partial^2}{\partial t^2} E( \vec{r},t)\)
    \(nabla^{2} \operatorname{pdg}_{6238}{\left(pdg_{9472},pdg_{1467} \right)} = \frac{partial pdg_{6197} pdg_{7940} \operatorname{pdg}_{6238}{\left(pdg_{9472},pdg_{1467} \right)}}{pdg_{1467}^{2}}\)
  1. 2029293929; locally 1029393:
    \(\nabla^2 E( \vec{r})\exp(i \omega t) = \mu_0 \epsilon_0 \frac{\partial^2}{\partial t^2} E( \vec{r})\exp(i \omega t)\)
    \(nabla^{2} \operatorname{pdg}_{6238}{\left(pdg_{9472} \right)} e^{pdg_{1467} pdg_{2321} pdg_{4621}} = \frac{partial pdg_{6197} pdg_{7940} \operatorname{pdg}_{6238}{\left(pdg_{9472} \right)} e^{pdg_{1467} pdg_{2321} pdg_{4621}}}{pdg_{1467}^{2}}\)
LHS diff is nabla**2*(pdg2718(pdg1467*pdg2321*pdg4621) - exp(pdg1467*pdg2321*pdg4621))*pdg6238(pdg9472) RHS diff is partial*pdg6197*pdg7940*(pdg2718(pdg1467*pdg2321*pdg4621) - exp(pdg1467*pdg2321*pdg4621))*pdg6238(pdg9472)/pdg1467**2 9499428242:
9394939493:
2029293929:
9499428242:
9394939493:
2029293929:
6 differentiate with respect to
  1. 2029293929; locally 1029393:
    \(\nabla^2 E( \vec{r})\exp(i \omega t) = \mu_0 \epsilon_0 \frac{\partial^2}{\partial t^2} E( \vec{r})\exp(i \omega t)\)
    \(nabla^{2} \operatorname{pdg}_{6238}{\left(pdg_{9472} \right)} e^{pdg_{1467} pdg_{2321} pdg_{4621}} = \frac{partial pdg_{6197} pdg_{7940} \operatorname{pdg}_{6238}{\left(pdg_{9472} \right)} e^{pdg_{1467} pdg_{2321} pdg_{4621}}}{pdg_{1467}^{2}}\)
  1. 0003232242:
    \(t\)
    \(pdg_{1467}\)
  1. 4985825552; locally 2939392:
    \(\nabla^2 E( \vec{r})\exp(i \omega t) = i \omega \mu_0 \epsilon_0 \frac{\partial}{\partial t} E( \vec{r})\exp(i \omega t)\)
    \(nabla^{2} \operatorname{pdg}_{6238}{\left(pdg_{9472} \right)} e^{pdg_{1467} pdg_{2321} pdg_{4621}} = pdg_{2321} pdg_{4621} pdg_{6197} pdg_{7940} \frac{\partial}{\partial pdg_{1467}} \operatorname{pdg}_{6238}{\left(pdg_{9472} \right)} e^{pdg_{1467} pdg_{2321} pdg_{4621}}\)
no check performed 2029293929:
4985825552:
2029293929:
4985825552:
2 declare initial expr
  1. 8572852424; locally 9393848:
    \(\vec{E} = E( \vec{r},t)\)
    \(pdg_{4326} = \operatorname{pdg}_{6238}{\left(pdg_{9472},pdg_{1467} \right)}\)
no validation is available for declarations 8572852424:
8572852424:
3 declare guess solution
  1. 8494839423; locally 4758592:
    \(\nabla^2 \vec{E} = \mu_0 \epsilon_0 \frac{\partial^2 \vec{E}}{\partial t^2}\)
    \(nabla^{2} pdg_{4326} = \frac{partial pdg_{4326} pdg_{6197} pdg_{7940}}{pdg_{1467}^{2}}\)
  1. 9499428242; locally 3994928:
    \(E( \vec{r},t) = E( \vec{r})\exp(i \omega t)\)
    \(\operatorname{pdg}_{6238}{\left(pdg_{9472},pdg_{1467} \right)} = \operatorname{pdg}_{2718}{\left(pdg_{1467} pdg_{2321} pdg_{4621} \right)} \operatorname{pdg}_{6238}{\left(pdg_{9472} \right)}\)
no validation is available for declarations 8494839423:
9499428242:
8494839423:
9499428242:
4 substitute LHS of expr 1 into expr 2
  1. 8572852424; locally 9393848:
    \(\vec{E} = E( \vec{r},t)\)
    \(pdg_{4326} = \operatorname{pdg}_{6238}{\left(pdg_{9472},pdg_{1467} \right)}\)
  2. 8494839423; locally 4758592:
    \(\nabla^2 \vec{E} = \mu_0 \epsilon_0 \frac{\partial^2 \vec{E}}{\partial t^2}\)
    \(nabla^{2} pdg_{4326} = \frac{partial pdg_{4326} pdg_{6197} pdg_{7940}}{pdg_{1467}^{2}}\)
  1. 9394939493; locally 3839493:
    \(\nabla^2 E( \vec{r},t) = \mu_0 \epsilon_0 \frac{\partial^2}{\partial t^2} E( \vec{r},t)\)
    \(nabla^{2} \operatorname{pdg}_{6238}{\left(pdg_{9472},pdg_{1467} \right)} = \frac{partial pdg_{6197} pdg_{7940} \operatorname{pdg}_{6238}{\left(pdg_{9472},pdg_{1467} \right)}}{pdg_{1467}^{2}}\)
valid 8572852424:
8494839423:
9394939493:
8572852424:
8494839423:
9394939493:
7 differentiate with respect to
  1. 4985825552; locally 2939392:
    \(\nabla^2 E( \vec{r})\exp(i \omega t) = i \omega \mu_0 \epsilon_0 \frac{\partial}{\partial t} E( \vec{r})\exp(i \omega t)\)
    \(nabla^{2} \operatorname{pdg}_{6238}{\left(pdg_{9472} \right)} e^{pdg_{1467} pdg_{2321} pdg_{4621}} = pdg_{2321} pdg_{4621} pdg_{6197} pdg_{7940} \frac{\partial}{\partial pdg_{1467}} \operatorname{pdg}_{6238}{\left(pdg_{9472} \right)} e^{pdg_{1467} pdg_{2321} pdg_{4621}}\)
  1. 0003232242:
    \(t\)
    \(pdg_{1467}\)
  1. 1858578388; locally 4958573:
    \(\nabla^2 E( \vec{r})\exp(i \omega t) = - \omega^2 \mu_0 \epsilon_0 E( \vec{r})\exp(i \omega t)\)
    \(nabla^{2} \operatorname{pdg}_{6238}{\left(pdg_{9472} \right)} e^{pdg_{1467} pdg_{2321} pdg_{4621}} = - pdg_{2321}^{2} pdg_{6197} pdg_{7940} \operatorname{pdg}_{6238}{\left(pdg_{9472} \right)} e^{pdg_{1467} pdg_{2321} pdg_{4621}}\)
no check performed 4985825552:
1858578388:
4985825552:
1858578388:
10 simplify
  1. 9485384858; locally 9495903:
    \(\nabla^2 E( \vec{r})\exp(i \omega t) = - \frac{\omega^2}{c^2} E( \vec{r})\exp(i \omega t)\)
    \(nabla^{2} \operatorname{pdg}_{2718}{\left(pdg_{1467} pdg_{2321} pdg_{4621} \right)} \operatorname{pdg}_{6238}{\left(pdg_{9472} \right)} = - \frac{pdg_{2321}^{2} \operatorname{pdg}_{2718}{\left(pdg_{1467} pdg_{2321} pdg_{4621} \right)} \operatorname{pdg}_{6238}{\left(pdg_{9472} \right)}}{pdg_{4567}^{2}}\)
  1. 3485475729; locally 3949492:
    \(\nabla^2 E( \vec{r}) = - \frac{\omega^2}{c^2} E( \vec{r})\)
    \(nabla^{2} \operatorname{pdg}_{6238}{\left(pdg_{9472} \right)} = - \frac{pdg_{2321}^{2} \operatorname{pdg}_{6238}{\left(pdg_{9472} \right)}}{pdg_{4567}^{2}}\)
LHS diff is nabla**2*(pdg2718(pdg1467*pdg2321*pdg4621) - 1)*pdg6238(pdg9472) RHS diff is pdg2321**2*(1 - pdg2718(pdg1467*pdg2321*pdg4621))*pdg6238(pdg9472)/pdg4567**2 9485384858:
3485475729:
9485384858:
3485475729:
11 declare final expr
  1. 3485475729; locally 3949492:
    \(\nabla^2 E( \vec{r}) = - \frac{\omega^2}{c^2} E( \vec{r})\)
    \(nabla^{2} \operatorname{pdg}_{6238}{\left(pdg_{9472} \right)} = - \frac{pdg_{2321}^{2} \operatorname{pdg}_{6238}{\left(pdg_{9472} \right)}}{pdg_{4567}^{2}}\)
no validation is available for declarations 3485475729:
3485475729:
9 substitute LHS of expr 1 into expr 2
  1. 1858578388; locally 4958573:
    \(\nabla^2 E( \vec{r})\exp(i \omega t) = - \omega^2 \mu_0 \epsilon_0 E( \vec{r})\exp(i \omega t)\)
    \(nabla^{2} \operatorname{pdg}_{6238}{\left(pdg_{9472} \right)} e^{pdg_{1467} pdg_{2321} pdg_{4621}} = - pdg_{2321}^{2} pdg_{6197} pdg_{7940} \operatorname{pdg}_{6238}{\left(pdg_{9472} \right)} e^{pdg_{1467} pdg_{2321} pdg_{4621}}\)
  2. 4585828572; locally 4949582:
    \(\epsilon_0 \mu_0 = \frac{1}{c^2}\)
    \(pdg_{6197} pdg_{7940} = \frac{1}{pdg_{4567}^{2}}\)
  1. 9485384858; locally 9495903:
    \(\nabla^2 E( \vec{r})\exp(i \omega t) = - \frac{\omega^2}{c^2} E( \vec{r})\exp(i \omega t)\)
    \(nabla^{2} \operatorname{pdg}_{2718}{\left(pdg_{1467} pdg_{2321} pdg_{4621} \right)} \operatorname{pdg}_{6238}{\left(pdg_{9472} \right)} = - \frac{pdg_{2321}^{2} \operatorname{pdg}_{2718}{\left(pdg_{1467} pdg_{2321} pdg_{4621} \right)} \operatorname{pdg}_{6238}{\left(pdg_{9472} \right)}}{pdg_{4567}^{2}}\)
LHS diff is -nabla**2*pdg2718(pdg1467*pdg2321*pdg4621)*pdg6238(pdg9472) + pdg6197*pdg7940 RHS diff is (pdg2321**2*pdg2718(pdg1467*pdg2321*pdg4621)*pdg6238(pdg9472) + 1)/pdg4567**2 1858578388:
4585828572: failed
9485384858:
1858578388:
4585828572: N/A
9485384858:
1 declare initial expr
  1. 8494839423; locally 4758592:
    \(\nabla^2 \vec{E} = \mu_0 \epsilon_0 \frac{\partial^2 \vec{E}}{\partial t^2}\)
    \(nabla^{2} pdg_{4326} = \frac{partial pdg_{4326} pdg_{6197} pdg_{7940}}{pdg_{1467}^{2}}\)
no validation is available for declarations 8494839423:
8494839423:
8 declare initial expr
  1. 4585828572; locally 4949582:
    \(\epsilon_0 \mu_0 = \frac{1}{c^2}\)
    \(pdg_{6197} pdg_{7940} = \frac{1}{pdg_{4567}^{2}}\)
no validation is available for declarations 4585828572: failed
4585828572: N/A
Physics Derivation Graph: Steps for electric field wave equation: from time dependent to time independent

Symbols for this derivation

See also all 227 symbols
symbol ID category latex scope dimension name value Used in derivations references
2321 variable \omega
\(\omega\)
['real']
  • time: -1
angular frequency 26
2718 constant \exp
\(\exp\)
['real'] dimensionless e 2.71828   unitless
8
9472 variable \vec{r}
\(\vec{r}\)
real
  • length: 1
radius vector
  • str_note
24
4621 variable i
\(i\)
['imaginary'] dimensionless imaginary unit 74
4326 variable \vec{E}
\(\vec{E}\)
complex dimensionless electric field 9
4567 constant c
\(c\)
['real']
  • length: 1
  • time: -1
speed of light in vacuum 299792458   meters/second
32
6197 constant \mu_0
\(\mu_0\)
real
  • electric charge: -2
  • length: 1
  • mass: 1
vacuum permeability, permeability of free space, permeability of vacuum, or magnetic constant 1.25663706212E^{-6}   N/A^2
8
6238 variable E
\(E\)
real dimensionless electric field 20
1467 variable t
\(t\)
['real']
  • time: 1
time 121
7940 constant \epsilon_0
\(\epsilon_0\)
real
  • electric charge: 2
  • length: -3
  • mass: -1
  • time: 2
vacuum permittivity, permittivity of free space or electric constant or the distributed capacitance of the vacuum 8.8541878128E-{12}   F/m
14
MESSAGES: