This page contains three views of the steps in the derivation: d3js, graphviz PNG, and a table.
Notes for this derivation:
source: \cite{1999_Tipler_Llewellyn}, page 21; see also https://en.wikipedia.org/wiki/Lorentz_transformation and https://en.wikipedia.org/wiki/Derivations_of_the_Lorentz_transformations
Index | Inference Rule | Input latex | Feeds latex | Output latex | step validity | dimension check | unit check | notes |
---|---|---|---|---|---|---|---|---|
20 | expr 1 is equivalent to expr 2 under the condition |
|
|
|
no check performed |
4287102261:
1586866563: 1916173354: |
4287102261:
1586866563: 1916173354: |
based on the comparison of the t^2 terms |
1 | declare initial expr |
|
|
|
no validation is available for declarations |
4662369843:
|
4662369843:
|
equation 1-13 on page 21 in \cite{1999_Tipler_Llewellyn} |
15 | declare assumption |
|
|
|
no validation is available for declarations |
8515803375:
|
8515803375:
|
|
11 | swap LHS with RHS |
|
|
|
Nothing to split |
8730201316:
5148266645: |
8730201316:
5148266645: |
|
12 | declare initial expr |
|
|
|
no validation is available for declarations |
4287102261:
|
4287102261:
|
|
25 | add X to both sides |
|
|
|
valid |
5763749235:
2999795755: |
5763749235:
2999795755: |
|
6 | subtract X from both sides |
|
|
|
valid |
7741202861:
4139999399: |
7741202861:
4139999399: |
|
23 | divide both sides by |
|
|
|
valid |
2417941373:
1639827492: |
2417941373:
1639827492: |
|
24 | multiply both sides by |
|
|
|
valid |
1639827492:
5763749235: |
1639827492:
5763749235: |
|
10 | simplify |
|
|
|
Nothing to split |
1974334644:
8730201316: |
1974334644:
8730201316: |
|
4 | simplify |
|
|
|
LHS diff is 0 RHS diff is pdg1790*(pdg1357*pdg4989 - pdg1790*(pdg1357*pdg1467 - pdg4037)) - pdg1790(-pdg1357*pdg1467*pdg1790 + pdg1357*pdg4989 + pdg1790*pdg4037) |
3426941928:
2096918413: |
3426941928:
2096918413: |
|
19 | expr 1 is equivalent to expr 2 under the condition |
|
|
|
no check performed |
4287102261:
1586866563: 3182633789: |
4287102261:
1586866563: 3182633789: |
based on the comparison of the x^2 terms |
22 | subtract X from both sides |
|
|
|
valid |
3182633789:
2417941373: |
3182633789:
2417941373: |
solve for \gamma |
29 | square root both sides |
|
|
|
no check performed |
7906112355:
1528310784: 8360117126: |
7906112355:
1528310784: 8360117126: |
|
17 | simplify |
|
|
|
LHS diff is 0 RHS diff is pdg4567**2*(-pdg1357**2*pdg1467**2*pdg1790**4 + 2*pdg1357**2*pdg1467*pdg1790*pdg4037*(pdg1790**2 - 1) + pdg1357**2*pdg4037**2*(pdg1790**2 - 1) + (pdg1357*pdg1467*pdg1790**2 - pdg4037*(pdg1790**2 - 1))**2)/(pdg1357**2*pdg1790**2) |
9805063945:
1935543849: |
9805063945:
1935543849: |
expanded the squared terms |
30 | declare final expr |
|
|
|
no validation is available for declarations |
1528310784:
|
1528310784:
|
Lorentz factor definition |
13 | declare initial expr |
|
|
|
no validation is available for declarations |
1201689765:
|
1201689765:
|
|
5 | simplify |
|
|
|
LHS diff is 0 RHS diff is pdg1357*pdg1467*pdg1790**2 - pdg1357*pdg1790*pdg4989 - pdg1790**2*pdg4037 + pdg1790(-pdg1357*pdg1467*pdg1790 + pdg1357*pdg4989 + pdg1790*pdg4037) |
2096918413:
7741202861: |
2096918413:
7741202861: |
|
14 | declare assumption |
|
|
|
no validation is available for declarations |
7057864873:
|
7057864873:
|
|
3 | substitute LHS of expr 1 into expr 2 |
|
|
|
LHS diff is 0 RHS diff is pdg1790**2*(pdg1464 - pdg4037) |
4662369843:
2983053062: dimensions are consistent 3426941928: |
4662369843:
2983053062: N/A 3426941928: |
solve output expr for t' |
9 | divide both sides by |
|
|
|
Nothing to split |
9409776983:
1974334644: |
9409776983:
1974334644: |
|
18 | simplify |
|
|
|
LHS diff is pdg1357**2*pdg1467**2*pdg1790**2 - 2*pdg1467*pdg1790**2*pdg4037*pdg4567**2/pdg1357 + 2*pdg1467*pdg4037*pdg4567**2/pdg1357 + pdg4037**2*pdg4567**2*(pdg1790**2 - 1)**2/(pdg1357**2*pdg1790**2) RHS diff is (pdg1357**2*pdg1467**2*pdg1790**4 - 2*pdg1467*pdg1790*pdg4037*pdg4567**2*(pdg1790**2 - 1) - pdg4037**2*pdg4567**2*(pdg1790**2 - 1))/pdg1790**2 |
1935543849:
1586866563: |
1935543849:
1586866563: |
grouped by terms for x^2, xt, and t^2 |
27 | factor out X from LHS |
|
|
|
valid |
2542420160:
7513513483: |
2542420160:
7513513483: |
|
21 | expr 1 is equivalent to expr 2 under the condition |
|
|
|
Nothing to split |
4287102261:
1586866563: 2076171250: |
4287102261:
1586866563: 2076171250: |
based on the comparison of the (x t) terms |
16 | substitute LHS of four expressions into expr |
|
|
|
Nothing to split |
8515803375:
7057864873: 5148266645: 4662369843: 1201689765: 9805063945: |
8515803375:
7057864873: 5148266645: 4662369843: 1201689765: 9805063945: |
|
8 | add X to both sides |
|
|
|
Nothing to split |
9031609275:
9409776983: |
9031609275:
9409776983: |
|
26 | subtract X from both sides |
|
|
|
valid |
2999795755:
2542420160: |
2999795755:
2542420160: |
|
28 | divide both sides by |
|
|
|
LHS diff is pdg1790**2*(pdg1357**2 - pdg1790**2)/(pdg1790**2 - pdg4567**2) RHS diff is 0 |
7513513483:
7906112355: |
7513513483:
7906112355: |
|
7 | factor out X from LHS |
|
|
|
Nothing to split |
4139999399:
9031609275: |
4139999399:
9031609275: |
|
2 | declare initial expr |
|
|
|
no validation is available for declarations |
2983053062:
dimensions are consistent |
2983053062:
N/A |
equation 1-14 on page 21 in \cite{1999_Tipler_Llewellyn} |