## review derivation: Euler equation: trigonometric relations

This page contains three views of the steps in the derivation: d3js, graphviz PNG, and a table.

Hold the mouse over a node to highlight that node and its neighbors. You can zoom in/out. You can pan the image. You can move nodes by clicking and dragging.

Notes for this derivation:

Options
Alternate views of this derivation:
Edit this content:

To edit a step, click on the number in the "Index" column in the table below

Clicking on the step index will take you to the page where you can edit that step.

Index Inference Rule Input latex Feeds latex Output latex step validity dimension check unit check notes
6 divide both sides by
1. 4742644828; locally 2939484:
$$\exp(i x)+\exp(-i x) = 2 \cos(x)$$
$$e^{pdg_{1464} pdg_{4621}} + e^{- pdg_{1464} pdg_{4621}} = 2 \cos{\left(pdg_{1464} \right)}$$
1. 0004829194:
$$2$$
$$2$$
1. 3829492824; locally 4383592:
$$\frac{1}{2}\left(\exp(i x)+\exp(-i x) \right) = \cos(x)$$
$$\frac{e^{pdg_{1464} pdg_{4621}}}{2} + \frac{e^{- pdg_{1464} pdg_{4621}}}{2} = \cos{\left(pdg_{1464} \right)}$$
valid 4742644828:
3829492824:
4742644828:
3829492824:
8 declare final expr
1. 4585932229; locally 4849888:
$$\cos(x) = \frac{1}{2}\left(\exp(i x)+\exp(-i x) \right)$$
$$\cos{\left(pdg_{1464} \right)} = \frac{e^{pdg_{1464} pdg_{4621}}}{2} + \frac{e^{- pdg_{1464} pdg_{4621}}}{2}$$
2. 2103023049; locally 4849959:
$$\sin(x) = \frac{1}{2i}\left(\exp(i x)-\exp(-i x) \right)$$
$$\sin{\left(pdg_{1464} \right)} = \frac{e^{pdg_{1464} pdg_{4621}} - e^{- pdg_{1464} pdg_{4621}}}{2 pdg_{4621}}$$
no validation is available for declarations 4585932229:
2103023049:
4585932229:
2103023049:
11 divide both sides by
1. 3942849294; locally 4825483:
$$\exp(i x)-\exp(-i x) = 2 i \sin(x)$$
$$e^{pdg_{1464} pdg_{4621}} - e^{- pdg_{1464} pdg_{4621}} = 2 pdg_{4621} \sin{\left(pdg_{1464} \right)}$$
1. 0001921933:
$$2 i$$
$$2 pdg_{4621}$$
1. 4843995999; locally 1133483:
$$\frac{1}{2 i}\left(\exp(i x)-\exp(-i x) \right) = \sin(x)$$
$$\frac{e^{pdg_{1464} pdg_{4621}} - e^{- pdg_{1464} pdg_{4621}}}{2 pdg_{4621}} = \sin{\left(pdg_{1464} \right)}$$
valid 3942849294:
4843995999:
3942849294:
4843995999:
10 add expr 1 to expr 2
1. 4938429483; locally 8888888:
$$\exp(i x) = \cos(x)+i \sin(x)$$
$$e^{pdg_{1464} pdg_{4621}} = pdg_{4621} \sin{\left(pdg_{1464} \right)} + \cos{\left(pdg_{1464} \right)}$$
2. 2123139121; locally 3194924:
$$-\exp(-i x) = -\cos(x)+i \sin(x)$$
$$- e^{- pdg_{1464} pdg_{4621}} = pdg_{4621} \sin{\left(pdg_{1464} \right)} - \cos{\left(pdg_{1464} \right)}$$
1. 3942849294; locally 4825483:
$$\exp(i x)-\exp(-i x) = 2 i \sin(x)$$
$$e^{pdg_{1464} pdg_{4621}} - e^{- pdg_{1464} pdg_{4621}} = 2 pdg_{4621} \sin{\left(pdg_{1464} \right)}$$
valid 4938429483:
2123139121:
3942849294:
4938429483:
2123139121:
3942849294:
7 swap LHS with RHS
1. 3829492824; locally 4383592:
$$\frac{1}{2}\left(\exp(i x)+\exp(-i x) \right) = \cos(x)$$
$$\frac{e^{pdg_{1464} pdg_{4621}}}{2} + \frac{e^{- pdg_{1464} pdg_{4621}}}{2} = \cos{\left(pdg_{1464} \right)}$$
1. 4585932229; locally 4849888:
$$\cos(x) = \frac{1}{2}\left(\exp(i x)+\exp(-i x) \right)$$
$$\cos{\left(pdg_{1464} \right)} = \frac{e^{pdg_{1464} pdg_{4621}}}{2} + \frac{e^{- pdg_{1464} pdg_{4621}}}{2}$$
valid 3829492824:
4585932229:
3829492824:
4585932229:
5 add expr 1 to expr 2
1. 4938429483; locally 8888888:
$$\exp(i x) = \cos(x)+i \sin(x)$$
$$e^{pdg_{1464} pdg_{4621}} = pdg_{4621} \sin{\left(pdg_{1464} \right)} + \cos{\left(pdg_{1464} \right)}$$
2. 4938429484; locally 8888883:
$$\exp(-i x) = \cos(x)-i \sin(x)$$
$$e^{- pdg_{1464} pdg_{4621}} = - pdg_{4621} \sin{\left(pdg_{1464} \right)} + \cos{\left(pdg_{1464} \right)}$$
1. 4742644828; locally 2939484:
$$\exp(i x)+\exp(-i x) = 2 \cos(x)$$
$$e^{pdg_{1464} pdg_{4621}} + e^{- pdg_{1464} pdg_{4621}} = 2 \cos{\left(pdg_{1464} \right)}$$
valid 4938429483:
4938429484:
4742644828:
4938429483:
4938429484:
4742644828:
9 multiply both sides by
1. 4938429484; locally 8888883:
$$\exp(-i x) = \cos(x)-i \sin(x)$$
$$e^{- pdg_{1464} pdg_{4621}} = - pdg_{4621} \sin{\left(pdg_{1464} \right)} + \cos{\left(pdg_{1464} \right)}$$
1. 0003747849:
$$-1$$
$$-1$$
1. 2123139121; locally 3194924:
$$-\exp(-i x) = -\cos(x)+i \sin(x)$$
$$- e^{- pdg_{1464} pdg_{4621}} = pdg_{4621} \sin{\left(pdg_{1464} \right)} - \cos{\left(pdg_{1464} \right)}$$
valid 4938429484:
2123139121:
4938429484:
2123139121:
2 change variable X to Y
1. 4938429483; locally 8888888:
$$\exp(i x) = \cos(x)+i \sin(x)$$
$$e^{pdg_{1464} pdg_{4621}} = pdg_{4621} \sin{\left(pdg_{1464} \right)} + \cos{\left(pdg_{1464} \right)}$$
1. 0002393922:
$$x$$
$$pdg_{1464}$$
2. 0003949052:
$$-x$$
$$- pdg_{1464}$$
1. 2394853829; locally 8888881:
$$\exp(-i x) = \cos(-x)+i \sin(-x)$$
$$e^{- pdg_{1464} pdg_{4621}} = - pdg_{4621} \sin{\left(pdg_{1464} \right)} + \cos{\left(pdg_{1464} \right)}$$
valid 4938429483:
2394853829: error for dim with 2394853829
4938429483:
2394853829: N/A
12 swap LHS with RHS
1. 4843995999; locally 1133483:
$$\frac{1}{2 i}\left(\exp(i x)-\exp(-i x) \right) = \sin(x)$$
$$\frac{e^{pdg_{1464} pdg_{4621}} - e^{- pdg_{1464} pdg_{4621}}}{2 pdg_{4621}} = \sin{\left(pdg_{1464} \right)}$$
1. 2103023049; locally 4849959:
$$\sin(x) = \frac{1}{2i}\left(\exp(i x)-\exp(-i x) \right)$$
$$\sin{\left(pdg_{1464} \right)} = \frac{e^{pdg_{1464} pdg_{4621}} - e^{- pdg_{1464} pdg_{4621}}}{2 pdg_{4621}}$$
valid 4843995999:
2103023049:
4843995999:
2103023049:
4 function is odd
1. 4938429482; locally 8888882:
$$\exp(-i x) = \cos(x)+i \sin(-x)$$
$$e^{- pdg_{1464} pdg_{4621}} = - pdg_{4621} \sin{\left(pdg_{1464} \right)} + \cos{\left(pdg_{1464} \right)}$$
1. 0003919391:
$$x$$
$$pdg_{1464}$$
2. 0003981813:
$$-\sin(x)$$
$$- \sin{\left(pdg_{1464} \right)}$$
3. 0002919191:
$$\sin(-x)$$
$$- \sin{\left(pdg_{1464} \right)}$$
1. 4938429484; locally 8888883:
$$\exp(-i x) = \cos(x)-i \sin(x)$$
$$e^{- pdg_{1464} pdg_{4621}} = - pdg_{4621} \sin{\left(pdg_{1464} \right)} + \cos{\left(pdg_{1464} \right)}$$
no check performed 4938429482: error for dim with 4938429482
4938429484:
4938429482: N/A
4938429484:
1 declare initial expr
1. 4938429483; locally 8888888:
$$\exp(i x) = \cos(x)+i \sin(x)$$
$$e^{pdg_{1464} pdg_{4621}} = pdg_{4621} \sin{\left(pdg_{1464} \right)} + \cos{\left(pdg_{1464} \right)}$$
no validation is available for declarations 4938429483:
4938429483:
3 function is even
1. 2394853829; locally 8888881:
$$\exp(-i x) = \cos(-x)+i \sin(-x)$$
$$e^{- pdg_{1464} pdg_{4621}} = - pdg_{4621} \sin{\left(pdg_{1464} \right)} + \cos{\left(pdg_{1464} \right)}$$
1. 0004849392:
$$x$$
$$pdg_{1464}$$
2. 0001030901:
$$\cos(x)$$
$$\cos{\left(pdg_{1464} \right)}$$
3. 0003413423:
$$\cos(-x)$$
$$\cos{\left(pdg_{1464} \right)}$$
1. 4938429482; locally 8888882:
$$\exp(-i x) = \cos(x)+i \sin(-x)$$
$$e^{- pdg_{1464} pdg_{4621}} = - pdg_{4621} \sin{\left(pdg_{1464} \right)} + \cos{\left(pdg_{1464} \right)}$$
no check performed 2394853829: error for dim with 2394853829
4938429482: error for dim with 4938429482
2394853829: N/A
4938429482: N/A
Physics Derivation Graph: Steps for Euler equation: trigonometric relations

## Symbols for this derivation

$$i$$
$$x$$