MESSAGES:

Return to navigation page or list derivations

Review Euler equation proof

step inference rule input feed output step validity (as per SymPy)
1
  • 111981: declare initial expression
  • number of inputs: 0; feeds: 0; outputs: 1
  • Eq.~\\ref{eq:#1} is an initial equation.
  1. 9492920340
    \(y=\cos(x)+i \sin(x)\)
no validation is available for declarations
2
  • 111649: differentiate with respect to
  • number of inputs: 1; feeds: 1; outputs: 1
  • Differentiate Eq.~\\ref{eq:#2} with respect to $#1$; yields Eq.~\\ref{eq:#3}.
  1. 9492920340
    \(y=\cos(x)+i \sin(x)\)
  1. 0007636749
    \(x\)
  1. 9429829482
    \(\frac{d}{dx} y=-\sin(x) + i\cos(x)\)
recognized infrule but not yet supported
3
  • 111260: factor out X from RHS
  • number of inputs: 1; feeds: 1; outputs: 1
  • Factor $#1$ from the RHS of Eq.~\\ref{eq:#2}; yields Eq.~\\ref{eq:#3}.
  1. 9429829482
    \(\frac{d}{dx} y=-\sin(x) + i\cos(x)\)
  1. 0007563791
    \(i\)
  1. 9482984922
    \(\frac{d}{dx} y=(i\sin(x) + \cos(x)) i\)
Type Tuple cannot be instantiated; use tuple() instead
4
  • 111634: substitute RHS of expr 1 into expr 2
  • number of inputs: 2; feeds: 0; outputs: 1
  • Substitute RHS of Eq.~\\ref{eq:#1} into Eq.~\\ref{eq:#2}; yields Eq.~\\ref{eq:#3}.
  1. 9482984922
    \(\frac{d}{dx} y=(i\sin(x) + \cos(x)) i\)
  1. 9492920340
    \(y=\cos(x)+i \sin(x)\)
  1. 9848294829
    \(\frac{d}{dx} y=y i\)
Type Tuple cannot be instantiated; use tuple() instead
5
  • 111182: multiply both sides by
  • number of inputs: 1; feeds: 1; outputs: 1
  • Multiply both sides of Eq.~\\ref{eq:#2} by $#1$; yields Eq.~\\ref{eq:#3}.
  1. 9848294829
    \(\frac{d}{dx} y=y i\)
  1. 0003954314
    \(dx\)
  1. 9848292229
    \(dy=y i dx\)
Type Tuple cannot be instantiated; use tuple() instead
6
  • 111975: divide both sides by
  • number of inputs: 1; feeds: 1; outputs: 1
  • Divide both sides of Eq.~\\ref{eq:#2} by $#1$; yields Eq.~\\ref{eq:#3}.
  1. 9848292229
    \(dy=y i dx\)
  1. 0009877781
    \(y\)
  1. 9482113948
    \(\frac{dy}{y}=i dx\)
invalid syntax (<string>, line 0)
7
  • 111132: indefinite integrate RHS over
  • number of inputs: 1; feeds: 1; outputs: 1
  • Indefinite integral of RHS of Eq.~\\ref{eq:#2} over $#1$; yields Eq.~\\ref{eq:#3}.
  1. 9482113948
    \(\frac{dy}{y}=i dx\)
  1. 0004264724
    \(y\)
  1. 9482943948
    \(\log(y)=i dx\)
recognized infrule but not yet supported
8
  • 111132: indefinite integrate RHS over
  • number of inputs: 1; feeds: 1; outputs: 1
  • Indefinite integral of RHS of Eq.~\\ref{eq:#2} over $#1$; yields Eq.~\\ref{eq:#3}.
  1. 9482943948
    \(\log(y)=i dx\)
  1. 0006563727
    \(x\)
  1. 4928239482
    \(\log(y)=i x\)
recognized infrule but not yet supported
9
  • 111268: swap LHS with RHS
  • number of inputs: 1; feeds: 0; outputs: 1
  • Swap LHS of Eq.~\\ref{eq:#1} with RHS; yields Eq.~\\ref{eq:#2}.
  1. 4928239482
    \(\log(y)=i x\)
  1. 4923339482
    \(i x=\log(y)\)
valid
10
  • 111721: make expr power
  • number of inputs: 1; feeds: 1; outputs: 1
  • Make Eq.~\\ref{eq:#2} the power of $#1$; yields Eq.~\\ref{eq:#3}.
  1. 4923339482
    \(i x=\log(y)\)
  1. 0006656532
    \(e\)
  1. 9482923849
    \(\exp(i x)=y\)
LHS diff is -pdg0002718**(pdg0001464*pdg0004621) + exp(pdg0001464*pdg0004621) RHS diff is pdg0001452 - pdg0002718**(log(pdg0001452)/log(10))
11
  • 111634: substitute RHS of expr 1 into expr 2
  • number of inputs: 2; feeds: 0; outputs: 1
  • Substitute RHS of Eq.~\\ref{eq:#1} into Eq.~\\ref{eq:#2}; yields Eq.~\\ref{eq:#3}.
  1. 9492920340
    \(y=\cos(x)+i \sin(x)\)
  1. 9482923849
    \(\exp(i x)=y\)
  1. 4938429483
    \(\exp(i x)=\cos(x)+i \sin(x)\)
LHS diff is 0 RHS diff is pdg0001452 - pdg0004621*sin(pdg0001464) - cos(pdg0001464)
12
  • 111341: declare final expression
  • number of inputs: 1; feeds: 0; outputs: 0
  • Eq.~\\ref{eq:#1} is one of the final equations.
  1. 4938429483
    \(\exp(i x)=\cos(x)+i \sin(x)\)
no validation is available for declarations


Hold the mouse over a node to highlight that node and its neighbors. You can zoom in/out. You can pan the image. You can move nodes by clicking and dragging.

Actions: Edit Derivation

Generate Tex file or PDF file

   xor   

Delete Derivation and all associated steps

This does not remove expressions, symbols, and operations.

timing of Neo4j queries: