Return to navigation page or list derivations

Review electric field wave equation: from time dependent to time independent

step inference rule input feed output validity (as per SymPy)
5
  • ID: 111556; substitute LHS of expr 1 into expr 2
  • number of inputs: 2; feeds: 0; outputs: 1
  • Substitute LHS of Eq.~\\ref{eq:#1} into Eq.~\\ref{eq:#2}; yields Eq.~\\ref{eq:#3}.
  1. 9394939493
    \(\nabla^2 E( \vec{r},t)=\mu_0 \epsilon_0 \frac{\partial^2}{\partial t^2} E( \vec{r},t)\)
  1. 9499428242
    \(E( \vec{r},t)=E( \vec{r})\exp(i \omega t)\)
  1. 2029293929
    \(\nabla^2 E( \vec{r})\exp(i \omega t)=\mu_0 \epsilon_0 \frac{\partial^2}{\partial t^2} E( \vec{r})\exp(i \omega t)\)
LHS diff is -nabla**2*pdg0006238(pdg0009472)*exp(pdg0001467*pdg0002321*pdg0004621) + pdg0006238(pdg0009472, pdg0001467) RHS diff is (-partial*pdg0006197*pdg0007940*exp(pdg0001467*pdg0002321*pdg0004621) + pdg0001467**2*pdg0002718(pdg0001467*pdg0002321*pdg0004621))*pdg0006238(pdg0009472)/pdg0001467**2
6
  • ID: 111649; differentiate with respect to
  • number of inputs: 1; feeds: 1; outputs: 1
  • Differentiate Eq.~\\ref{eq:#2} with respect to $#1$; yields Eq.~\\ref{eq:#3}.
  1. 2029293929
    \(\nabla^2 E( \vec{r})\exp(i \omega t)=\mu_0 \epsilon_0 \frac{\partial^2}{\partial t^2} E( \vec{r})\exp(i \omega t)\)
  1. 0003232242
    \(t\)
  1. 4985825552
    \(\nabla^2 E( \vec{r})\exp(i \omega t)=i \omega \mu_0 \epsilon_0 \frac{\partial}{\partial t} E( \vec{r})\exp(i \omega t)\)
recognized infrule but not yet supported
2
  • ID: 111981; declare initial expression
  • number of inputs: 0; feeds: 0; outputs: 1
  • Eq.~\\ref{eq:#1} is an initial equation.
  1. 8572852424
    \(\vec{E}=E( \vec{r},t)\)
no validation is available for declarations
3
  • ID: 111237; declare guess solution
  • number of inputs: 1; feeds: 0; outputs: 1
  • Judicious choice as a guessed solution to Eq.~\\ref{eq:#1} is Eq.~\\ref{eq:#2},
  1. 8494839423
    \(\nabla^2 \vec{E}=\mu_0 \epsilon_0 \frac{\partial^2 \vec{E}}{\partial t^2}\)
  1. 9499428242
    \(E( \vec{r},t)=E( \vec{r})\exp(i \omega t)\)
no validation is available for declarations
4
  • ID: 111556; substitute LHS of expr 1 into expr 2
  • number of inputs: 2; feeds: 0; outputs: 1
  • Substitute LHS of Eq.~\\ref{eq:#1} into Eq.~\\ref{eq:#2}; yields Eq.~\\ref{eq:#3}.
  1. 8494839423
    \(\nabla^2 \vec{E}=\mu_0 \epsilon_0 \frac{\partial^2 \vec{E}}{\partial t^2}\)
  1. 8572852424
    \(\vec{E}=E( \vec{r},t)\)
  1. 9394939493
    \(\nabla^2 E( \vec{r},t)=\mu_0 \epsilon_0 \frac{\partial^2}{\partial t^2} E( \vec{r},t)\)
LHS diff is -nabla**2*pdg0006238(pdg0009472, pdg0001467) + pdg0004326 RHS diff is (-partial*pdg0006197*pdg0007940 + pdg0001467**2)*pdg0006238(pdg0009472, pdg0001467)/pdg0001467**2
7
  • ID: 111649; differentiate with respect to
  • number of inputs: 1; feeds: 1; outputs: 1
  • Differentiate Eq.~\\ref{eq:#2} with respect to $#1$; yields Eq.~\\ref{eq:#3}.
  1. 4985825552
    \(\nabla^2 E( \vec{r})\exp(i \omega t)=i \omega \mu_0 \epsilon_0 \frac{\partial}{\partial t} E( \vec{r})\exp(i \omega t)\)
  1. 0003232242
    \(t\)
  1. 1858578388
    \(\nabla^2 E( \vec{r})\exp(i \omega t)=- \omega^2 \mu_0 \epsilon_0 E( \vec{r})\exp(i \omega t)\)
recognized infrule but not yet supported
10
  • ID: 111457; simplify
  • number of inputs: 1; feeds: 0; outputs: 1
  • Simplify Eq.~\\ref{eq:#1}; yields Eq.~\\ref{eq:#2}.
  1. 9485384858
    \(\nabla^2 E( \vec{r})\exp(i \omega t)=- \frac{\omega^2}{c^2} E( \vec{r})\exp(i \omega t)\)
  1. 3485475729
    \(\nabla^2 E( \vec{r})=- \frac{\omega^2}{c^2} E( \vec{r})\)
LHS diff is nabla**2*(pdg0002718(pdg0001467*pdg0002321*pdg0004621) - 1)*pdg0006238(pdg0009472) RHS diff is pdg0002321**2*(1 - pdg0002718(pdg0001467*pdg0002321*pdg0004621))*pdg0006238(pdg0009472)/pdg0004567**2
11
  • ID: 111341; declare final expression
  • number of inputs: 1; feeds: 0; outputs: 0
  • Eq.~\\ref{eq:#1} is one of the final equations.
  1. 3485475729
    \(\nabla^2 E( \vec{r})=- \frac{\omega^2}{c^2} E( \vec{r})\)
no validation is available for declarations
9
  • ID: 111556; substitute LHS of expr 1 into expr 2
  • number of inputs: 2; feeds: 0; outputs: 1
  • Substitute LHS of Eq.~\\ref{eq:#1} into Eq.~\\ref{eq:#2}; yields Eq.~\\ref{eq:#3}.
  1. 4585828572
    \(\epsilon_0 \mu_0=\frac{1}{c^2}\)
  1. 1858578388
    \(\nabla^2 E( \vec{r})\exp(i \omega t)=- \omega^2 \mu_0 \epsilon_0 E( \vec{r})\exp(i \omega t)\)
  1. 9485384858
    \(\nabla^2 E( \vec{r})\exp(i \omega t)=- \frac{\omega^2}{c^2} E( \vec{r})\exp(i \omega t)\)
LHS diff is nabla**2*(-pdg0002718(pdg0001467*pdg0002321*pdg0004621) + exp(pdg0001467*pdg0002321*pdg0004621))*pdg0006238(pdg0009472) RHS diff is pdg0002321**2*(pdg0002718(pdg0001467*pdg0002321*pdg0004621) - exp(pdg0001467*pdg0002321*pdg0004621))*pdg0006238(pdg0009472)/pdg0004567**2
1
  • ID: 111981; declare initial expression
  • number of inputs: 0; feeds: 0; outputs: 1
  • Eq.~\\ref{eq:#1} is an initial equation.
  1. 8494839423
    \(\nabla^2 \vec{E}=\mu_0 \epsilon_0 \frac{\partial^2 \vec{E}}{\partial t^2}\)
no validation is available for declarations
8
  • ID: 111981; declare initial expression
  • number of inputs: 0; feeds: 0; outputs: 1
  • Eq.~\\ref{eq:#1} is an initial equation.
  1. 4585828572
    \(\epsilon_0 \mu_0=\frac{1}{c^2}\)
no validation is available for declarations


Hold the mouse over a node to highlight that node and its neighbors. You can zoom in/out. You can pan the image. You can move nodes by clicking and dragging.

Actions: Edit Derivation

Generate Tex file or PDF file

   xor   

Delete Derivation and all associated steps

This does not remove expressions, symbols, and operations.

timing of Neo4j queries: