MESSAGES:

Return to navigation page or list derivations

Review coefficient of thermal expansion using the equation of state for an ideal gas

step inference rule input feed output step validity (as per SymPy)
1
  • 111981: declare initial expression
  • number of inputs: 0; feeds: 0; outputs: 1
  • Eq.~\\ref{eq:#1} is an initial equation.
  1. 3464107376
    \(\alpha=\frac{1}{V} \left( \frac{\partial V}{\partial T} \right)_p\)
no validation is available for declarations
2
  • 111981: declare initial expression
  • number of inputs: 0; feeds: 0; outputs: 1
  • Eq.~\\ref{eq:#1} is an initial equation.
  1. 3497828859
    \(V=\frac{n R T}{P}\)
no validation is available for declarations
3
  • 111556: substitute LHS of expr 1 into expr 2
  • number of inputs: 2; feeds: 0; outputs: 1
  • Substitute LHS of Eq.~\\ref{eq:#1} into Eq.~\\ref{eq:#2}; yields Eq.~\\ref{eq:#3}.
  1. 3464107376
    \(\alpha=\frac{1}{V} \left( \frac{\partial V}{\partial T} \right)_p\)
  1. 3497828859
    \(V=\frac{n R T}{P}\)
  1. 1311403394
    \(\alpha=\frac{1}{V} \frac{nR}{P} \left( \frac{\partial T}{\partial T} \right)_P\)
Type Tuple cannot be instantiated; use tuple() instead
4
  • 111457: simplify
  • number of inputs: 1; feeds: 0; outputs: 1
  • Simplify Eq.~\\ref{eq:#1}; yields Eq.~\\ref{eq:#2}.
  1. 1311403394
    \(\alpha=\frac{1}{V} \frac{nR}{P} \left( \frac{\partial T}{\partial T} \right)_P\)
  1. 5962145508
    \(\alpha=\frac{nR}{VP}\)
Type Tuple cannot be instantiated; use tuple() instead
5
  • 111981: declare initial expression
  • number of inputs: 0; feeds: 0; outputs: 1
  • Eq.~\\ref{eq:#1} is an initial equation.
  1. 8435841627
    \(P V=n R T\)
no validation is available for declarations
6
  • 111975: divide both sides by
  • number of inputs: 1; feeds: 1; outputs: 1
  • Divide both sides of Eq.~\\ref{eq:#2} by $#1$; yields Eq.~\\ref{eq:#3}.
  1. 8435841627
    \(P V=n R T\)
  1. 7924842770
    \(T\)
  1. 2613006036
    \(\frac{PV}{T}=nR\)
valid
7
  • 111634: substitute RHS of expr 1 into expr 2
  • number of inputs: 2; feeds: 0; outputs: 1
  • Substitute RHS of Eq.~\\ref{eq:#1} into Eq.~\\ref{eq:#2}; yields Eq.~\\ref{eq:#3}.
  1. 5962145508
    \(\alpha=\frac{nR}{VP}\)
  1. 2613006036
    \(\frac{PV}{T}=nR\)
  1. 6925244346
    \(\alpha=\frac{PV}{T} \frac{1}{VP}\)
LHS diff is -pdg0004686 + pdg0007586*pdg0008134/pdg0007343 RHS diff is pdg0002834*pdg0008179 - pdg0007586*pdg0008134/pdg0007343
8
  • 111457: simplify
  • number of inputs: 1; feeds: 0; outputs: 1
  • Simplify Eq.~\\ref{eq:#1}; yields Eq.~\\ref{eq:#2}.
  1. 6925244346
    \(\alpha=\frac{PV}{T} \frac{1}{VP}\)
  1. 2472653783
    \(\alpha=\frac{1}{T}\)
LHS diff is 0 RHS diff is (pdg0007586*pdg0008134 - 1)/pdg0007343
9
  • 111341: declare final expression
  • number of inputs: 1; feeds: 0; outputs: 0
  • Eq.~\\ref{eq:#1} is one of the final equations.
  1. 2472653783
    \(\alpha=\frac{1}{T}\)
no validation is available for declarations


Hold the mouse over a node to highlight that node and its neighbors. You can zoom in/out. You can pan the image. You can move nodes by clicking and dragging.

Actions: Edit Derivation

Generate Tex file or PDF file

   xor   

Delete Derivation and all associated steps

This does not remove expressions, symbols, and operations.

timing of Neo4j queries: