MESSAGES:

Return to navigation page or list derivations

Review first law of thermodynamics

step inference rule input feed output step validity (as per SymPy)
1
  • 111981: declare initial expression
  • number of inputs: 0; feeds: 0; outputs: 1
  • Eq.~\\ref{eq:#1} is an initial equation.
  1. 1815398659
    \(U=Q + W\)
no validation is available for declarations
2
  • 111981: declare initial expression
  • number of inputs: 0; feeds: 0; outputs: 1
  • Eq.~\\ref{eq:#1} is an initial equation.
  1. 9941599459
    \(dU=\left(\frac{\partial U}{\partial T}\right)_V dT + \left(\frac{\partial U}{\partial V}\right)_T dV\)
no validation is available for declarations
3
  • 111981: declare initial expression
  • number of inputs: 0; feeds: 0; outputs: 1
  • Eq.~\\ref{eq:#1} is an initial equation.
  1. 3547519267
    \(S=k_{\rm Boltzmann} \ln \Omega\)
no validation is available for declarations
4
  • 111981: declare initial expression
  • number of inputs: 0; feeds: 0; outputs: 1
  • Eq.~\\ref{eq:#1} is an initial equation.
  1. 1085150613
    \(C_V=\left(\frac{\partial U}{\partial T}\right)_V\)
no validation is available for declarations
5
  • 111981: declare initial expression
  • number of inputs: 0; feeds: 0; outputs: 1
  • Eq.~\\ref{eq:#1} is an initial equation.
  1. 5634116660
    \(\pi_T=\left(\frac{\partial U}{\partial V}\right)_T\)
no validation is available for declarations
6
  • 111732: substitute LHS of two expressions into expression
  • number of inputs: 3; feeds: 0; outputs: 1
  • Substitute LHS of Eq.~\\ref{eq:#1} and LHS of Eq.~\\ref{eq:#2} into Eq.~\\ref{eq:#3}; yields Eq.~\\ref{eq:#4}.
  1. 5634116660
    \(\pi_T=\left(\frac{\partial U}{\partial V}\right)_T\)
  1. 1085150613
    \(C_V=\left(\frac{\partial U}{\partial T}\right)_V\)
  1. 9941599459
    \(dU=\left(\frac{\partial U}{\partial T}\right)_V dT + \left(\frac{\partial U}{\partial V}\right)_T dV\)
  1. 5002539602
    \(dU=C_V dT + \pi_T dV\)
recognized infrule but not yet supported
7
  • 111975: divide both sides by
  • number of inputs: 1; feeds: 1; outputs: 1
  • Divide both sides of Eq.~\\ref{eq:#2} by $#1$; yields Eq.~\\ref{eq:#3}.
  1. 5002539602
    \(dU=C_V dT + \pi_T dV\)
  1. 8854422847
    \(dT\)
  1. 6055078815
    \(\left(\frac{\partial U}{\partial T}\right)_p=C_V \left(\frac{\partial T}{\partial T}\right)_p + \pi_T \left( \frac{\partial V}{\partial T} \right)_p\)
Type Tuple cannot be instantiated; use tuple() instead
8
  • 111981: declare initial expression
  • number of inputs: 0; feeds: 0; outputs: 1
  • Eq.~\\ref{eq:#1} is an initial equation.
  1. 3464107376
    \(\alpha=\frac{1}{V} \left( \frac{\partial V}{\partial T} \right)_p\)
no validation is available for declarations
9
  • 111182: multiply both sides by
  • number of inputs: 1; feeds: 1; outputs: 1
  • Multiply both sides of Eq.~\\ref{eq:#2} by $#1$; yields Eq.~\\ref{eq:#3}.
  1. 3464107376
    \(\alpha=\frac{1}{V} \left( \frac{\partial V}{\partial T} \right)_p\)
  1. 5074423401
    \(V\)
  1. 6397683463
    \(V \alpha=\left( \frac{\partial V}{\partial T} \right)_p\)
Type Tuple cannot be instantiated; use tuple() instead
10
  • 111556: substitute LHS of expr 1 into expr 2
  • number of inputs: 2; feeds: 0; outputs: 1
  • Substitute LHS of Eq.~\\ref{eq:#1} into Eq.~\\ref{eq:#2}; yields Eq.~\\ref{eq:#3}.
  1. 6055078815
    \(\left(\frac{\partial U}{\partial T}\right)_p=C_V \left(\frac{\partial T}{\partial T}\right)_p + \pi_T \left( \frac{\partial V}{\partial T} \right)_p\)
  1. 6397683463
    \(V \alpha=\left( \frac{\partial V}{\partial T} \right)_p\)
  1. 2257410739
    \(\left(\frac{\partial U}{\partial T}\right)_p=C_V \left(\frac{\partial T}{\partial T}\right)_p + \pi_T V \alpha\)
Type Tuple cannot be instantiated; use tuple() instead
11
  • 111457: simplify
  • number of inputs: 1; feeds: 0; outputs: 1
  • Simplify Eq.~\\ref{eq:#1}; yields Eq.~\\ref{eq:#2}.
  1. 2257410739
    \(\left(\frac{\partial U}{\partial T}\right)_p=C_V \left(\frac{\partial T}{\partial T}\right)_p + \pi_T V \alpha\)
  1. 7826132469
    \(\left(\frac{\partial U}{\partial T}\right)_p=C_V + \pi_T V \alpha\)
Type Tuple cannot be instantiated; use tuple() instead
12
  • 111981: declare initial expression
  • number of inputs: 0; feeds: 0; outputs: 1
  • Eq.~\\ref{eq:#1} is an initial equation.
  1. 9781951738
    \(\kappa_T=\frac{-1}{V} \left( \frac{ \partial V}{\partial P} \right)_T\)
no validation is available for declarations


Hold the mouse over a node to highlight that node and its neighbors. You can zoom in/out. You can pan the image. You can move nodes by clicking and dragging.

Actions: Edit Derivation

Generate Tex file or PDF file

   xor   

Delete Derivation and all associated steps

This does not remove expressions, symbols, and operations.

timing of Neo4j queries: