Return to navigation page or list derivations

Review equation of motion for a spring

step inference rule input feed output step validity (as per SymPy)
1
  • 111981: declare initial expression
  • number of inputs: 0; feeds: 0; outputs: 1
  • Eq.~\\ref{eq:#1} is an initial equation.
  1. 5345738321
    \(F=m a\)
no validation is available for declarations
2
  • 111981: declare initial expression
  • number of inputs: 0; feeds: 0; outputs: 1
  • Eq.~\\ref{eq:#1} is an initial equation.
  1. 4428528271
    \(F_{\rm spring}=-k x\)
no validation is available for declarations
3
  • 111981: declare initial expression
  • number of inputs: 0; feeds: 0; outputs: 1
  • Eq.~\\ref{eq:#1} is an initial equation.
  1. 6831694380
    \(a=\frac{d^2 x}{dt^2}\)
no validation is available for declarations
4
  • 111355: LHS of expr 1 equals LHS of expr 2
  • number of inputs: 2; feeds: 0; outputs: 1
  • LHS of Eq.~\\ref{eq:#1} is equal to LHS of Eq.~\\ref{eq:#2}; yields Eq.~\\ref{eq:#3}.
  1. 4428528271
    \(F_{\rm spring}=-k x\)
  1. 5345738321
    \(F=m a\)
  1. 2334518266
    \(m a=-k x\)
input diff is pdg0004183 - pdg0004202 diff is -pdg0001356*pdg0004037 - pdg0005156*pdg0009140 diff is pdg0001356*pdg0004037 + pdg0005156*pdg0009140
5
  • 111975: divide both sides by
  • number of inputs: 1; feeds: 1; outputs: 1
  • Divide both sides of Eq.~\\ref{eq:#2} by $#1$; yields Eq.~\\ref{eq:#3}.
  1. 2334518266
    \(m a=-k x\)
  1. 3634715785
    \(m\)
  1. 8655294002
    \(a=-\frac{k}{m}x\)
valid
6
  • 111355: LHS of expr 1 equals LHS of expr 2
  • number of inputs: 2; feeds: 0; outputs: 1
  • LHS of Eq.~\\ref{eq:#1} is equal to LHS of Eq.~\\ref{eq:#2}; yields Eq.~\\ref{eq:#3}.
  1. 6831694380
    \(a=\frac{d^2 x}{dt^2}\)
  1. 8655294002
    \(a=-\frac{k}{m}x\)
  1. 8991236357
    \(\frac{d^2 x}{dt^2}=-\frac{k}{m} x\)
input diff is a - pdg0009140 diff is d**2*(-pdg0004037 + x)/dt**2 diff is 0
7
  • 111237: declare guess solution
  • number of inputs: 1; feeds: 0; outputs: 1
  • Judicious choice as a guessed solution to Eq.~\\ref{eq:#1} is Eq.~\\ref{eq:#2},
  1. 8991236357
    \(\frac{d^2 x}{dt^2}=-\frac{k}{m} x\)
  1. 5415824175
    \(x(t)=A \cos(\omega t)\)
no validation is available for declarations
8
  • 111649: differentiate with respect to
  • number of inputs: 1; feeds: 1; outputs: 1
  • Differentiate Eq.~\\ref{eq:#2} with respect to $#1$; yields Eq.~\\ref{eq:#3}.
  1. 5415824175
    \(x(t)=A \cos(\omega t)\)
  1. 5846177002
    \(t\)
  1. 7652131521
    \(\frac{dx}{dt}=-A \omega \sin (\omega t)\)
recognized infrule but not yet supported
9
  • 111649: differentiate with respect to
  • number of inputs: 1; feeds: 1; outputs: 1
  • Differentiate Eq.~\\ref{eq:#2} with respect to $#1$; yields Eq.~\\ref{eq:#3}.
  1. 7652131521
    \(\frac{dx}{dt}=-A \omega \sin (\omega t)\)
  1. 1451839362
    \(t\)
  1. 5945893986
    \(\frac{d^2 x}{dt^2}=-A \omega^2 \cos(\omega t)\)
recognized infrule but not yet supported
10
  • 111355: LHS of expr 1 equals LHS of expr 2
  • number of inputs: 2; feeds: 0; outputs: 1
  • LHS of Eq.~\\ref{eq:#1} is equal to LHS of Eq.~\\ref{eq:#2}; yields Eq.~\\ref{eq:#3}.
  1. 5945893986
    \(\frac{d^2 x}{dt^2}=-A \omega^2 \cos(\omega t)\)
  1. 8991236357
    \(\frac{d^2 x}{dt^2}=-\frac{k}{m} x\)
  1. 1772973171
    \(-\frac{k}{m} x=-A \omega^2 \cos(\omega t)\)
input diff is d**2*(-pdg0004037 + x)/dt**2 diff is k*x/pdg0005156 - pdg0002321**2*pdg0009885*cos(pdg0001467*pdg0002321) diff is A*pdg0002321**2*cos(pdg0002321*pdg0009491) - pdg0001356*pdg0004037/pdg0005156
11
  • 111556: substitute LHS of expr 1 into expr 2
  • number of inputs: 2; feeds: 0; outputs: 1
  • Substitute LHS of Eq.~\\ref{eq:#1} into Eq.~\\ref{eq:#2}; yields Eq.~\\ref{eq:#3}.
  1. 5415824175
    \(x(t)=A \cos(\omega t)\)
  1. 1772973171
    \(-\frac{k}{m} x=-A \omega^2 \cos(\omega t)\)
  1. 2148049269
    \(-\frac{k}{m} A \cos(\omega t)=-A \omega^2 \cos(\omega t)\)
LHS diff is k*(A*cos(pdg0002321*pdg0009491) - x)/pdg0005156 RHS diff is 0
12
  • 111182: multiply both sides by
  • number of inputs: 1; feeds: 1; outputs: 1
  • Multiply both sides of Eq.~\\ref{eq:#2} by $#1$; yields Eq.~\\ref{eq:#3}.
  1. 2148049269
    \(-\frac{k}{m} A \cos(\omega t)=-A \omega^2 \cos(\omega t)\)
  1. 7473576008
    \(\frac{-1}{A \cos(\omega t)}\)
  1. 1931103031
    \(\frac{k}{m}=\omega^2\)
LHS arithmetic error. Diff: -(A*k*pdg0001467*cos(pdg0002321*pdg0009491) + pdg0001356)/pdg0005156
13
  • 111524: square root both sides
  • number of inputs: 1; feeds: 0; outputs: 2
  • Take the square root of both sides of Eq.~\\ref{eq:#1}; yields Eq.~\\ref{eq:#2} and Eq.~\\ref{eq:#3}.
  1. 1931103031
    \(\frac{k}{m}=\omega^2\)
  1. 1784114349
    \(\sqrt{\frac{k}{m}}=\omega\)
  1. 1888494137
    \(-\sqrt{\frac{k}{m}}=\omega\)
recognized infrule but not yet supported
14
  • 111634: substitute RHS of expr 1 into expr 2
  • number of inputs: 2; feeds: 0; outputs: 1
  • Substitute RHS of Eq.~\\ref{eq:#1} into Eq.~\\ref{eq:#2}; yields Eq.~\\ref{eq:#3}.
  1. 5415824175
    \(x(t)=A \cos(\omega t)\)
  1. 1784114349
    \(\sqrt{\frac{k}{m}}=\omega\)
  1. 6908055431
    \(x(t)=A \cos\left(\frac{k}{m} t\right)\)
LHS diff is sqrt(pdg0001356/pdg0005156) - x(pdg0001467) RHS diff is pdg0002321 - pdg0009885*cos(k*pdg0001467/pdg0005156)
15
  • 111341: declare final expression
  • number of inputs: 1; feeds: 0; outputs: 0
  • Eq.~\\ref{eq:#1} is one of the final equations.
  1. 6908055431
    \(x(t)=A \cos\left(\frac{k}{m} t\right)\)
no validation is available for declarations


Hold the mouse over a node to highlight that node and its neighbors. You can zoom in/out. You can pan the image. You can move nodes by clicking and dragging.

Actions: Edit Derivation

Generate Tex file or PDF file

   xor   

Delete Derivation and all associated steps

This does not remove expressions, symbols, and operations.

timing of Neo4j queries: