expression ID | Latex | list of symbols | name | notes | used in derivation |
---|---|---|---|---|---|
0000040490 | a^2 | ||||
0000999900 | b/(2 a) | ||||
0001030901 | \cos(x) | ||||
0001111111 | (\sin(x))^2 | ||||
0001209482 | 2 \pi | ||||
0001304952 | \hbar | ||||
0001334112 | W | ||||
0001921933 | 2 i | ||||
0002239424 | 2 |
|
|||
0002338514 | \vec{p}_{2} | ||||
0002342425 | m/m | ||||
0002393922 | x | ||||
0002424922 | a | ||||
0002436656 | i \hbar | ||||
0002449291 | b/(2 a) | ||||
0002838490 | b/(2 a) | ||||
0002919191 | \sin(-x) | ||||
0002929944 | 1/2 |
|
|||
0002940021 | 2 \pi | ||||
0003232242 | t | ||||
0003413423 | \cos(-x) | ||||
0003747849 | -1 |
|
|||
0003838111 | 2 |
|
|||
0003919391 | x | ||||
0003949052 | -x | ||||
0003949921 | \hbar | ||||
0003954314 | dx | ||||
0003981813 | -\sin(x) | ||||
0004089571 | 2 x | ||||
0004264724 | y | ||||
0004307451 | (b/(2 a))^2 | ||||
0004582412 | x | ||||
0004829194 | 2 |
|
|||
0004831494 | a | ||||
0004849392 | x | ||||
0004858592 | h | ||||
0004934845 | x | ||||
0004948585 | a | ||||
0005395034 | a_{\alpha} \langle \psi_{\alpha} | \psi_{\beta} \rangle | ||||
0005626421 | t | ||||
0005749291 | f | ||||
0005938585 | \frac{-\hbar^2}{2m} | ||||
0006466214 | (\sin(x))^2 | ||||
0006544644 | t | ||||
0006563727 | x | ||||
0006644853 | c/a | ||||
0006656532 | e | ||||
0007471778 | 2(\sin(x))^2 | ||||
0007563791 | i | ||||
0007636749 | x | ||||
0007894942 | (\sin(x))^2 | ||||
0008837284 | T | ||||
0008842811 | \cos(2 x) | ||||
0009458842 | \psi(x) | ||||
0009484724 | \frac{n \pi}{W}x | ||||
0009485857 | a^2\frac{2}{W} | ||||
0009485858 | \frac{2n\pi}{W} | ||||
0009492929 | v du | ||||
0009587738 | \psi | ||||
0009877781 | y | ||||
0203024440 | 1 = \int_0^W a \sin\left(\frac{n \pi}{W} x\right) \psi(x)^* dx | ||||
0404050504 | \lambda = \frac{v}{f} | ||||
0439492440 | \frac{1}{a^2} = \frac{1}{2}W - \frac{1}{2}\left. \frac{W}{2n\pi}\sin\left(\frac{2n\pi}{W} x\right) \right|_0^W | evaluating-definite-integrals-for.html | |||
0934990943 | k = \frac{2 \pi}{v T} | ||||
0948572140 | \int \cos(a x) dx = \frac{1}{a}\sin(a x) | ||||
1010393913 | \langle \psi| \hat{A}^+ |\psi \rangle = \langle a \rangle^* | stats.html | |||
1010393944 | x = \langle\psi_{\alpha}| a_{\beta} |\psi_{\beta} \rangle | ||||
1010923823 | k W = n \pi | ||||
1020010291 | 0 = a \sin(k W) | ||||
1020394900 | p = h/\lambda | ||||
1020394902 | E = h f | ||||
1020854560 | I = (A + B)(A + B)^* | ||||
1025759423 | y | ||||
1029039903 | p = m v | ||||
1029039904 | p^2 = m^2 v^2 | ||||
1036530438 | d_2 | ||||
1038566242 | \sinh x = \frac{\exp(x) - \exp(-x)}{2} | ||||
1085150613 | C_V = \left(\frac{\partial U}{\partial T}\right)_V | definition of heat capacity at constant volume | |||
1087417579 | 0 = - \frac{1}{2} g t_f^2 + v_0 t_f \sin(\theta) | ||||
1092872200 | KE_1 | ||||
1100332145 | R | ||||
1114820451 | W_{\rm by\ system} = \Delta KE | Work is change in energy | |||
1128605625 | {\rm sech}^2\ x + \tanh^2(x) = \frac{4}{\left(\exp(x)+\exp(-x)\right)^2} + \frac{\left(\exp(x)-\exp(-x)\right)^2}{\left(\exp(x)+\exp(-x)\right)^2} | ||||
1132941271 | m_{\rm Earth} = \frac{(9.80665 m/s^2) (6.3781*10^6 m)^2}{6.67430*10^{-11}m^3 kg^{-1} s^{-2}} | ||||
1143343287 | G \frac{m_{\rm Earth}}{r_{\rm Earth}} = \frac{1}{2} v_{\rm escape}^2 | ||||
1158485859 | \frac{-\hbar^2}{2m} \nabla^2 = {\cal H} | ||||
1166310428 | 0 dt = d v_x | ||||
1172039918 | I_{\rm coherent} = 4 |A|^2 | ||||
1190768176 | \kappa_T = \frac{-nRT}{V} \left( \frac{ \partial }{\partial P}\left(\frac{1}{P}\right) \right)_T | ||||
1191796961 | \frac{1}{2} g t_f = v_0 \sin(\theta) | ||||
1193980495 | m_{\rm Earth} | ||||
1201689765 | x'^2 + y'^2 + z'^2 = c^2 t'^2 | describes a spherical wavefront for an observer in a moving frame of reference | |||
1202310110 | \frac{1}{a^2} = \int_0^W \frac{1}{2} dx - \frac{1}{2} \int_0^W \cos\left(2\frac{n \pi}{W}x\right) dx | ||||
1202312210 | \frac{1}{a^2} = \frac{1}{2}W - \frac{1}{2} \int_0^W \cos\left(2\frac{n \pi}{W}x\right) dx | ||||
1203938249 | a_{\beta} \langle \psi_{\alpha} | \psi_{\beta} \rangle = a_{\alpha} \langle \psi_{\alpha} | \psi_{\beta} \rangle | ||||
1238593037 | c | ||||
1248277773 | \cos(2 x) = 1 - 2 (\sin(x))^2 | ||||
1258245373 | E | ||||
1259826355 | d = (v - a t) t + \frac{1}{2} a t^2 | ||||
1265150401 | d = \frac{2 v_0 + a t}{2} t | ||||
1268845856 | [A_{\rm adsorption}] | ||||
1277713901 | d | ||||
1292735067 | F_{gravitational} = G \frac{m_1 m_2}{r^2} | ||||
1293913110 | 0 = b | ||||
1293923844 | \lambda = v T | ||||
1306360899 | x = v_{0, x} t + x_0 | ||||
1310571337 | \theta_{\rm refracted} = 90^{\circ} - \theta_{\rm Brewster} | ||||
1311403394 | \alpha = \frac{1}{V} \frac{nR}{P} \left( \frac{\partial T}{\partial T} \right)_P | ||||
1314464131 | \vec{ \nabla} \times \frac{\partial \vec{H}}{\partial t} = \epsilon_0 \frac{\partial^2 \vec{E}}{\partial t^2} | ||||
1314864131 | \vec{ \nabla} \times \vec{H} = \epsilon_0 \frac{\partial }{\partial t}\vec{E} | ||||
1323602089 | I_1 | ||||
1330874553 | v_{\rm escape} = \sqrt{2 G \frac{m_{\rm Earth}}{r_{\rm Earth}}} | ||||
1333474099 | F_{\rm centripetal} | ||||
1357848476 | A = |A| \exp(i \theta) | ||||
1377431959 | R | ||||
1395858355 | x = \langle \psi_{\alpha}| a_{\alpha} |\psi_{\beta}\rangle | ||||
1405465835 | y = - \frac{1}{2} g t^2 + v_{0, y} t + y_0 | ||||
1413137236 | m_1 | ||||
1439089569 | v_{0, x} | ||||
1451839362 | t | ||||
1457415749 | \frac{1}{R_{\rm total}} = \frac{1}{R_1} + \frac{1}{R_2} | total resistance for two resistors in parallel | |||
1484794622 | R_2 | ||||
1511199318 | Z | ||||
1512581563 | x | ||||
1525861537 | I = |A|^2 + |B|^2 + A B^* + B A^* | ||||
1528310784 | \gamma = \frac{1}{\sqrt{1-\frac{v^2}{c^2}}} | ||||
1541916015 | \theta = \frac{\pi}{4} | ||||
1552869972 | x_1 | ||||
1556389363 | E_{\rm Rydberg} = \frac{ m_e e^4 }{ 32 \pi^2 \epsilon_0^2 \hbar^2} | the bonding energy in condensed phases is given by the Rydberg energy on the order of several e | |||
1559688463 | \left(\frac{T_{\rm geostationary\ orbit}^2 G m_{\rm Earth}}{4 \pi^2}\right)^{1/3} = r_{\rm geostationary\ orbit} | ||||
1571582377 | F_{gravitational} \propto \frac{1}{r^2} | ||||
1586866563 | \left( \gamma^2 - c^2 \gamma^2 \left( \frac{1-\gamma^2}{\gamma^2} \right)^2 \frac{1}{v^2} \right) x^2 + y^2 + z^2 + \left( -\gamma^2 2 x v t - c^2 \gamma^2 2 t \left( \frac{1-\gamma^2}{\gamma^2} \right) \frac{x}{v} \right) = t^2 \left( c^2 \gamma^2 - \gamma^2 v^2 \right) | ||||
1590774089 | dW = F dx | ||||
1608399874 | V_2 | ||||
1614343171 | dt | ||||
1616666229 | v_{\rm final} | ||||
1635147226 | m_2 | ||||
1636453295 | \vec{ \nabla} \times \vec{ \nabla} \times \vec{E} = - \nabla^2 \vec{E} | ||||
1638282134 | \vec{p}_{\rm before} = \vec{p}_{\rm after} | ||||
1639827492 | - c^2 \frac{(1-\gamma^2)}{v^2 \gamma^2} = 1 | ||||
1648958381 | \nabla^2 \psi \left( \vec{r},t \right) = \frac{i}{\hbar} \vec{p} \cdot \left( \vec{ \nabla} \psi( \vec{r},t) \right) | representing-laplace-operator-nabla-in.html | |||
1650441634 | y_0 = 0 | define coordinate system such that initial height is at origin | |||
1676472948 | 0 = v_x - v_{0, x} | ||||
1702349646 | -g dt = d v_y | ||||
1716984328 | i x | ||||
1742775076 | Z | ||||
1772416655 | \frac{E_2 - E_1}{t} = v F - F v | ||||
1772973171 | -\frac{k}{m} x = -A \omega^2 \cos(\omega t) | ||||
1784114349 | \sqrt{\frac{k}{m}} = \omega | ||||
1809909100 | \frac{E_2 - E_1}{t} = 0 | ||||
1811867899 | T^2 = \frac{d_1+d_2}{d_1+d_2} d_2 4 \pi^2 \frac{r^2}{G m_1} | ||||
1815398659 | U = Q + W | ||||
1819663717 | a_x = \frac{d}{dt} v_x | ||||
1823570358 | C | ||||
1840080113 | KE_2 = 0 | object is not moving at $x=\infty$ | |||
1848400430 | F \propto m | ||||
1857710291 | 0 = a \sin(n \pi) | ||||
1858578388 | \nabla^2 E( \vec{r})\exp(i \omega t) = - \omega^2 \mu_0 \epsilon_0 E( \vec{r})\exp(i \omega t) | representing-laplace-operator-nabla-in.html | |||
1858772113 | k = \frac{n \pi}{W} | ||||
1888494137 | -\sqrt{\frac{k}{m}} = \omega | ||||
1894894315 | Z | ||||
1916173354 | -\gamma^2 v^2 + c^2 \gamma^2 = c^2 | ||||
1928085940 | Z^* = |Z| \exp( -i \theta ) | ||||
1931103031 | \frac{k}{m} = \omega^2 | ||||
1934748140 | \int |\psi(x)|^2 dx = 1 | ||||
1935543849 | \gamma^2 x^2 - \gamma^2 2 x v t + \gamma^2 v^2 t^2 + y^2 + z^2 = c^2 \gamma^2 \left(\frac{1-\gamma^2}{\gamma^2}\right)\frac{x^2}{\gamma^2} + c^2 \gamma^2 2 t \left(\frac{1-\gamma^2}{\gamma^2}\right)\frac{x}{\gamma} + c^2 \gamma^2 t^2 | ||||
1945487024 | p_A [S] | ||||
1963253044 | v_{0, x} dt = dx | ||||
1967582749 | t = \frac{v - v_0}{a} | ||||
1974334644 | \frac{x (1 - \gamma^2 )}{\gamma v} + \frac{\gamma^2 v t}{\gamma v} = t' | ||||
1977955751 | -g = \frac{d}{dt} v_y | ||||
1994296484 | v_{\rm satellite}^2 = G \frac{m_{\rm Earth}}{r} | ||||
2005061870 | v(r) = \sqrt{\frac{2 G m_2}{r}} | ||||
2016063530 | t | ||||
2029293929 | \nabla^2 E( \vec{r})\exp(i \omega t) = \mu_0 \epsilon_0 \frac{\partial^2}{\partial t^2} E( \vec{r})\exp(i \omega t) | representing-laplace-operator-nabla-in.html | |||
2042298788 | 0 = -G \frac{m_{\rm Earth} m}{r_{\rm Earth}} + \frac{1}{2} m v_{\rm escape}^2 | ||||
2051901211 | \frac{V}{R_1} = I_1 | ||||
2061086175 | W_{\rm to\ system} = -G m_1 m_2 \left(\frac{-1}{r} - \frac{-1}{\infty}\right) | ||||
2064205392 | A | ||||
2076171250 | -\gamma^2 2 x v t - c^2 \gamma^2 2 t \left( \frac{1-\gamma^2}{\gamma^2} \right) \frac{x}{v} = 0 | ||||
2081689540 | t | ||||
2086924031 | 0 = - \frac{1}{2} g t_f + v_0 \sin(\theta) | ||||
2091584724 | g_{\rm Earth} | ||||
2096918413 | x = \gamma ( \gamma x - \gamma v t + v t' ) | ||||
2103023049 | \sin(x) = \frac{1}{2i}\left(\exp(i x)-\exp(-i x) \right) | ||||
2113211456 | f = 1/T | ||||
2114570475 | m_{\rm satellite} | ||||
2114909846 | \theta_A = \frac{[A_{\rm adsorption}]}{[S_0]} | ||||
2121790783 | \tanh^2(x) = \frac{ \left(\exp(x)-\exp(-x)\right)^2}{\left(\exp(x)+\exp(-x)\right)^2} | ||||
2123139121 | -\exp(-i x) = -\cos(x)+i \sin(x) | ||||
2131616531 | T f = 1 | ||||
2135482543 | m | ||||
2148049269 | -\frac{k}{m} A \cos(\omega t) = -A \omega^2 \cos(\omega t) | ||||
2168306601 | [S_0] = \left(\frac{k_{\rm desorption}}{k_{\rm adsorption}} \frac{1}{p_A} + 1\right)[A_{\rm adsorption}] | ||||
2186083170 | \frac{KE_2 - KE_1}{t} = v F | ||||
2217103163 | \frac{m_1 d_1}{d_2} = m_2 | ||||
2226340358 | \gamma v | ||||
2232825726 | g_{\rm Earth} | ||||
2236639474 | (A + B)(A + B)^* = |A + B|^2 | ||||
2242144313 | a | ||||
2257410739 | \left(\frac{\partial U}{\partial T}\right)_p = C_V \left(\frac{\partial T}{\partial T}\right)_p + \pi_T V \alpha | ||||
2258485859 | {\cal H} \psi \left( \vec{r},t \right) = i \hbar \frac{\partial}{\partial t} \psi( \vec{r},t) | ||||
2267521164 | PE_2 = 0 | object goes to $\infty$ away from gravitational source | |||
2271186630 | V = I_{\rm total} R_{\rm total} | ||||
2293352649 | \theta - \phi | ||||
2297105551 | d = v_0 \frac{2 v_0 \sin(\theta)}{g} \cos(\theta) | ||||
2308660627 | G \frac{m_{\rm Earth}}{r_{\rm Earth}^2} = g_{\rm Earth} | ||||
2334518266 | m a = -k x | ||||
2344320475 | E_2 | ||||
2346150725 | r | ||||
2346952973 | m | ||||
2366691988 | \int 0 dt = \int d v_x | ||||
2378095808 | x_f = x_0 + d | ||||
2394240499 | x = a_{\beta} \langle \psi_{\alpha} | \psi_{\beta} \rangle | ||||
2394853829 | \exp(-i x) = \cos(-x)+i \sin(-x) | ||||
2394935831 | ( a_{\beta} - a_{\alpha} ) \langle \psi_{\alpha} | \psi_{\beta} \rangle = 0 | ||||
2394935835 | \left(\langle\psi| \hat{A} |\psi \rangle \right)^+ = \left(\langle a \rangle\right)^+ | ||||
2395958385 | \nabla^2 \psi \left( \vec{r},t \right) = \frac{-p^2}{\hbar} \psi( \vec{r},t) | representing-laplace-operator-nabla-in.html | |||
2396787389 | r_{\rm Earth} | ||||
2397692197 | a^3 | ||||
2403773761 | t | ||||
2404934990 | \langle x^2\rangle -2\langle x \rangle\langle x \rangle+\langle x \rangle^2 = \langle x^2 \rangle-\langle x \rangle^2 | ||||
2405307372 | \sin(2 x) = 2 \sin(x) \cos(x) | ||||
2417941373 | - c^2 \gamma^2 \frac{(1-\gamma^2)^2}{v^2 \gamma^4} = 1 - \gamma^2 | ||||
2431507955 | PE_2 = -F x_2 | ||||
2461349007 | - \frac{1}{2} g t^2 + v_{0, y} t + y_0 = y | ||||
2472653783 | \alpha = \frac{1}{T} | ||||
2484824786 | F = m g | ||||
2494533900 | \langle x^2\rangle -\langle x \rangle^2 = \langle x^2 \rangle-\langle x \rangle^2 | ||||
2501591100 | \exp(i \pi) + 1 = 0 | ||||
2503972039 | 0 = KE_{\rm escape} + PE_{\rm Earth\ surface} | ||||
2510804451 | 2/g | ||||
2519058903 | \sin(2 \theta) = 2 \sin(\theta) \cos(\theta) | ||||
2542420160 | c^2 \gamma^2 - v^2 \gamma^2 = c^2 | ||||
2575937347 | n_1 \sin( \theta_{\rm Brewster} ) = n_2 \sin( \theta_{\rm refracted} ) | ||||
2613006036 | \frac{PV}{T} = nR | ||||
2617541067 | \left(\frac{T_{\rm orbit}^2 G m_{\rm Earth}}{4 \pi^2}\right)^{1/3} = r | ||||
2648958382 | \nabla^2 \psi \left( \vec{r},t \right) = \frac{i}{\hbar} \vec{p} \cdot \left( \frac{i}{\hbar} \vec{p} \psi( \vec{r},t) \right) | ||||
2660368546 | r | ||||
2674546234 | m_{\rm Earth} | ||||
2685587762 | \frac{r_{\rm Earth}^2}{G} | ||||
2698469612 | V | ||||
2700934933 | 2 \cos(x) = \left( \exp(i (\theta - \phi)) + \exp(-i (\theta - \phi)) \right) | ||||
2715678478 | I R_{\rm total} = I R_1 + I R_2 | ||||
2719691582 | |A| = |B| | in a loop | |||
2741489181 | a_y = -g | ||||
2750380042 | v_{\rm escape} = -\sqrt{2 G \frac{m_{\rm Earth}}{r_{\rm Earth}}} | ||||
2754264786 | 2 |
|
|||
2762326680 | \cosh^2 x - \sinh^2 x = \frac{1}{4}\left( \exp(2x)+1+1+\exp(-2x) - \left(\exp(2x)-1-1+\exp(-2x)\right) \right) | ||||
2764966428 | m_2 | ||||
2768857871 | \frac{\sin( \theta_{\rm Brewster} )}{\cos( \theta_{\rm Brewster} )} = \frac{n_2}{n_1} | ||||
2770069250 | \frac{E_2 - E_1}{t} = \frac{(KE_2 - KE_1)}{t} + \frac{(PE_2 - PE_1)}{t} | ||||
2773628333 | \theta_1 | ||||
2809345867 | \frac{V}{R_{\rm total}} = I_{\rm total} | ||||
2848934890 | \langle a \rangle^* = \langle a \rangle | ||||
2857430695 | a = \frac{v_2 - v_1}{t} | acceleration | |||
2858549874 | - \frac{1}{2} g t^2 + v_{0, y} t = y - y_0 | ||||
2867848403 | I | ||||
2883079365 | r_{\rm Schwarzschild} c^2 = 2 G m | ||||
2897612567 | v = \alpha c \sqrt{ \frac{m_e}{A m_p} } | ||||
2902772962 | \tanh(x) = \frac{\frac{1}{2}\left( \exp(x)-\exp(-x) \right)}{\cosh(x)} | ||||
2906548078 | T^2 = \frac{r}{d_1+d_2} d_2 4 \pi^2 \frac{r^2}{G m_1} | ||||
2907404069 | W_{\rm by\ system} = W_{\rm to\ system} | ||||
2924222857 | v_{\rm initial} = v(r=\infty) | ||||
2944838499 | \psi(x) = a \sin(\frac{n \pi}{W} x) | ||||
2957211007 | m^3 kg^{-1} s^{-2} |
|
|||
2977457786 | 2 G \frac{m_{\rm Earth}}{r_{\rm Earth}} = v_{\rm escape}^2 | ||||
2983053062 | x = \gamma (x' + v t') | ||||
2998709778 | v_{\rm initial} = 0 | ||||
2999795755 | c^2 \gamma^2 = v^2 \gamma^2 + c^2 | ||||
3004158505 | \frac{T^2}{r} F_{gravitational} = \left( \frac{4 \pi^2 m r}{T^2} \right)\frac{T^2}{r} | ||||
3031116098 | R_2 | ||||
3041762466 | i | ||||
3046191961 | v_{\rm Earth\ orbit} = \frac{C_{\rm Earth\ orbit}}{t_{\rm Earth\ orbit}} | ||||
3060393541 | I_{\rm incoherent} = 2|A|^2 | ||||
3061811650 | n_1 \sin( \theta_{\rm Brewster} ) = n_2 \cos( \theta_{\rm Brewster} ) | ||||
3080027960 | v_{\rm Earth\ orbit} = \frac{2 \pi r_{\rm Earth\ orbit}}{t_{\rm Earth\ orbit}} | ||||
3085575328 | I = |A|^2 + |B|^2 + |A| |B| \exp(i (\theta - \phi)) + |A| |B| \exp(-i (\theta - \phi)) | ||||
3088463019 | m_2 | ||||
3105350101 | v_1 | ||||
3121234211 | \frac{k}{2\pi} = \lambda | ||||
3121234212 | p = \frac{h k}{2\pi} | ||||
3121513111 | k = \frac{2 \pi}{\lambda} | ||||
3131111133 | T = 1 / f | ||||
3131211131 | \omega = 2 \pi f | ||||
3132131132 | \omega = \frac{2\pi}{T} | ||||
3147472131 | \frac{\omega}{2 \pi} = f | ||||
3166466250 | m_1 | ||||
3169580383 | \vec{a} = \frac{d\vec{v}}{dt} | acceleration is the change in speed over a duration | |||
3176662571 | F_{\rm centripetal} = F_{\rm gravity} | applicable to any satellite orbit | |||
3182633789 | \gamma^2 - c^2 \gamma^2 \frac{(1-\gamma^2)^2}{v^2 \gamma^4} = 1 | ||||
3182907803 | x_0 | ||||
3183197515 | v_1 | ||||
3214170322 | v(r=\infty) = 0 | ||||
3219318145 | \frac{365 {\rm days}}{1 {\rm year}} \frac{24 {\rm hours}}{1 {\rm day}} \frac{60 {\rm minutes}}{1 {\rm hour}} \frac{60 {\rm seconds}}{1 {\rm minute}} |
|
|||
3236313290 | d | ||||
3246378279 | m | ||||
3253234559 | x = \frac{v_2^2 - v_1^2}{2 a} | ||||
3268645065 | x | ||||
3270039798 | 2 |
|
|||
3273630811 | x | ||||
3274176452 | v_{\rm initial} | ||||
3274926090 | t = \frac{x - x_0}{v_{0, x}} | ||||
3285732911 | (\cos(x))^2 = 1-(\sin(x))^2 | ||||
3291685884 | E = \frac{ m_e e^4 }{ 32 \pi^2 \epsilon_0^2 \hbar^2} | ||||
3331824625 | \exp(i \pi) = -1 | ||||
3342155559 | m | ||||
3350802342 | KE_{\rm initial} | ||||
3350830826 | Z Z^* = |Z|^2 | ||||
3353418803 | x | ||||
3360172339 | W = KE_2 - KE_1 | ||||
3364286646 | m_{\rm Earth} = 5.972*10^{24} kg | ||||
3366703541 | a = \frac{v - v_0}{t} | acceleration is the average change in speed over a duration | |||
3398368564 | F | ||||
3411994811 | v_{\rm average} = \frac{d}{t} | ||||
3412946408 | v^2 \gamma^2 | ||||
3417126140 | \tan( \theta_{\rm Brewster} ) = \frac{ n_2 }{ n_1 } | ||||
3426941928 | x = \gamma ( \gamma (x - v t) + v t' ) | ||||
3433441359 | V | ||||
3448601530 | \frac{T^2}{r} | ||||
3462972452 | v = v_0 + a t | ||||
3464107376 | \alpha = \frac{1}{V} \left( \frac{\partial V}{\partial T} \right)_p | definition of expansion coefficient | |||
3470587782 | \sin(x) \cos(x) = \frac{1}{2i}\left(\exp(i x)-\exp(-i x) \right) \frac{1}{2}\left(\exp(i x)+\exp(-i x) \right) | ||||
3472836147 | r_{\rm Earth\ orbit} = 1.496\ 10^8 {\rm km} | ||||
3485125659 | x_f = v_0 t_f \cos(\theta) + x_0 | ||||
3485475729 | \nabla^2 E( \vec{r}) = - \frac{\omega^2}{c^2} E( \vec{r}) | representing-laplace-operator-nabla-in.html | |||
3486213448 | m_{\rm satellite} | ||||
3488423948 | k_{\rm adsorption} p_A [S] = k_{\rm desorption} [A_{\rm adsorption}] | ||||
3495403335 | x | ||||
3497828859 | V = \frac{n R T}{P} | ||||
3507029294 | k_{\rm adsorption} p_A [S] = r_{\rm desorption} | ||||
3512166162 | W = F x | ||||
3531380618 | v(r) | ||||
3547519267 | S = k_{\rm Boltzmann} \ln \Omega | assumes equally probable microstates | |||
3566149658 | W_{\rm to\ system} = \int_{\infty}^r \frac{-G m_1 m_2}{x^2} dx | ||||
3585845894 | \langle \left(x-\langle x \rangle\right)^2 \rangle = \langle x^2 \rangle-\langle x \rangle^2 | ||||
3591237106 | \frac{E_2 - E_1}{t} = \frac{(KE_2 - KE_1)}{t} - F v | ||||
3594626260 | F_{\rm gravity} | ||||
3599953931 | [S_0] = [S] + [A_{\rm adsorption}] | ||||
3605073197 | \kappa_T = \frac{-nRT}{V} \left( \frac{-1}{P^2}\right) | ||||
3607070319 | d = \frac{v_0^2}{g} \sin\left(2 \frac{\pi}{4}\right) | ||||
3614055652 | v = \frac{2 \pi r}{T_{\rm orbit}} | ||||
3634715785 | m | ||||
3649797559 | F_{\rm centripetal} = m_2 d_2 \omega^2 | ||||
3650370389 | \frac{T^2}{r} F_{gravitational} = 4 \pi^2 m | ||||
3650814381 | F_{gravitational} \propto \frac{m_1 m_2}{r^2} | ||||
3652511721 | v | ||||
3660957533 | \cos(x) = \frac{1}{2} \left( \exp(i (\theta - \phi)) + \exp(-i (\theta - \phi)) \right) | ||||
3663007361 | 2 |
|
|||
3676159007 | v_{0, x} \int dt = \int dx | ||||
3685779219 | \sqrt{f} \approx 2 | ||||
3722461713 | t | ||||
3723096423 | 6.3781*10^6 |
|
|||
3731774096 | KE | ||||
3736177473 | r_{\rm adsorption} = k_{\rm adsorption} p_A [S] | ||||
3749492596 | E | ||||
3781109867 | T^2 = \frac{r^3 4 \pi^2}{(d_1+d_2) \frac{m_1}{d_2}G} | ||||
3806977900 | E_2 - E_1 = 0 | ||||
3809726424 | PE | ||||
3829492824 | \frac{1}{2}\left(\exp(i x)+\exp(-i x) \right) = \cos(x) | ||||
3846041519 | PE_{\rm Earth\ surface} = -G \frac{m_{\rm Earth} m}{r_{\rm Earth}} | ||||
3846345263 | T_{\rm orbit} | ||||
3868998312 | {\rm sech}^2\ x = \frac{4}{\left(\exp(x)+\exp(-x)\right)^2} | ||||
3876446703 | m | ||||
3896798826 | m_2 d_2 \omega^2 = G \frac{m_1 m_2}{r^2} | ||||
3906710072 | G \frac{m_{\rm Earth}}{r} = \frac{4 \pi^2 r^2}{T_{\rm orbit}^2} | ||||
3911081515 | -1 |
|
|||
3920616792 | T_{\rm geostationary orbit} = 24\ {\rm hours} | this applies for geostationary orbits | |||
3921072591 | m_1 | ||||
3924948349 | a_{\beta} \langle \psi_{\alpha} | \psi_{\beta} \rangle - a_{\alpha} \langle \psi_{\alpha} | \psi_{\beta} \rangle = 0 | ||||
3935058307 | v = \sqrt{ \frac{m_e}{m} \frac{e^4}{32 \pi^2 \epsilon_0^2 \hbar^2} } | ||||
3939572542 | KE_{\rm final} | ||||
3942849294 | \exp(i x)-\exp(-i x) = 2 i \sin(x) | ||||
3943939590 | x = a_{\alpha} \langle \psi_{\alpha}| \psi_{\beta}\rangle | ||||
3947269979 | \vec{ \nabla} \times \vec{ \nabla} \times \vec{E} = -\mu_0 \epsilon_0 \frac{\partial^2 \vec{E}}{\partial t^2} | ||||
3948571256 | \frac{\partial}{\partial t} \psi( \vec{r},t) = \frac{-i}{\hbar}E \psi( \vec{r},t) | ||||
3948574224 | \psi( \vec{r},t) = \psi_0 \exp\left(i\left( \vec{k}\cdot\vec{r} - \omega t \right) \right) | ||||
3948574226 | \psi( \vec{r},t) = \psi_0 \exp\left(i\left(\frac{ \vec{p}\cdot\vec{r}}{\hbar} - \omega t \right) \right) | ||||
3948574228 | \psi( \vec{r},t) = \psi_0 \exp\left(i\left(\frac{ \vec{p}\cdot\vec{r}}{\hbar} - \frac{E t}{\hbar} \right) \right) | ||||
3948574230 | \psi( \vec{r},t) = \psi_0 \exp\left(\frac{i}{\hbar}\left( \vec{p}\cdot\vec{r} - E t \right) \right) | ||||
3948574233 | \frac{\partial}{\partial t} \psi( \vec{r},t) = \psi_0 \frac{\partial}{\partial t}\exp\left(i\left(\frac{ \vec{p}\cdot\vec{r}}{\hbar} - \frac{E t}{\hbar} \right) \right) | ||||
3951205425 | \vec{p}_{\rm after} = \vec{p}_{1} | ||||
3967985562 | 2 |
|
|||
4057686137 | C | ||||
4072200527 | \frac{m_{\rm satellite} v_{\rm satellite}^2}{r} = G \frac{m_{\rm Earth} m_{\rm satellite}}{r^2} | ||||
4075539836 | A A^* = |A|^2 | ||||
4087145886 | V = I R | Ohm's law | Ohm%27s_law | ||
4107032818 | E_{\rm Rydberg} = E | ||||
4128500715 | V = I_1 R_1 | ||||
4139999399 | x - \gamma^2 x = - \gamma^2 v t + \gamma v t' | ||||
4147101187 | KE | ||||
4147472132 | E = \frac{h \omega}{2 \pi} | ||||
4153613253 | m_{\rm Earth} | ||||
4158986868 | a_x \hat{x} + a_y \hat{y} = \frac{d\vec{v}}{dt} | ||||
4162188238 | t_f | ||||
4166155526 | {\rm sech}\ x = \frac{2}{\exp(x)+\exp(-x)} | ||||
4167526462 | v_{0, y} | ||||
4180845508 | v_{\rm Earth\ orbit} = 29.8 \frac{{\rm km}}{{\rm sec}} | ||||
4182362050 | Z = |Z| \exp( i \theta ) | Z \in \mathbb{C} | |||
4188580242 | T^2 = \frac{r^3 4 \pi^2}{\left(m_1+\left(\frac{m_1}{d_2}d_1\right)\right)G} | ||||
4188639044 | x | ||||
4192519596 | B = |B| \exp(i \phi) | ||||
4202292449 | r_{\rm Earth\ orbit} | ||||
4213426349 | E_1 | ||||
4218009993 | x | ||||
4245712581 | v = \frac{2 \pi r}{t} | ||||
4264859781 | F \propto m_1 | ||||
4267808354 | F_{gravitational} = m \frac{v^2}{r} | ||||
4268085801 | x_0 + d = v_0 t_f \cos(\theta) + x_0 | ||||
4270680309 | \frac{KE_2 - KE_1}{t} = \frac{1}{2} m \frac{\left( v_2^2 - v_1^2 \right)}{t} | ||||
4275004561 | c^2 = 2 G \frac{m}{r_{\rm Schwarzschild}} | ||||
4287102261 | x^2 + y^2 + z^2 = c^2 t^2 | describes a spherical wavefront | |||
4298359835 | E = \frac{1}{2}m v^2 | ||||
4298359845 | E = \frac{1}{2m}m^2 v^2 | ||||
4298359851 | E = \frac{p^2}{2m} | ||||
4301729661 | [S_0] = \frac{[A_{\rm adsorption}]}{\left( \frac{k_{\rm adsorption}}{k_{\rm desorption}} \right) p_A} + [A_{\rm adsorption}] | ||||
4303372136 | E_1 = KE_1 + PE_1 | ||||
4319470443 | v_2 | ||||
4319544433 | 1/3 |
|
|||
4341171256 | i \hbar \frac{\partial}{\partial t} \psi( \vec{r},t) = \frac{p^2}{2 m} \psi( \vec{r},t) | ||||
4348571256 | \frac{\partial}{\partial t} \psi( \vec{r},t) = \frac{-i}{\hbar}\frac{p^2}{2 m} \psi( \vec{r},t) | ||||
4370074654 | t = t_f | ||||
4393258808 | F_{\rm centripetal} = m r \omega^2 | ||||
4393670960 | W_{\rm to\ system} = \frac{G m_1 m_2}{r} | ||||
4394958389 | \vec{ \nabla}\cdot \left( \vec{ \nabla} \psi( \vec{r},t) \right) = \frac{i}{\hbar} \vec{ \nabla}\cdot\left( \vec{p} \psi( \vec{r},t) \right) | ||||
4428528271 | F_{\rm{spring}} = -k x | Hooke's law | Hooke%27s_law | ||
4437214608 | Z | ||||
4447113478 | \int dW = G m_1 m_2 \int_{ r_{\rm Earth} }^{\infty} \frac{1}{x^2} dx | ||||
4470433702 | t_{\rm Earth\ orbit} | ||||
4490788873 | F \propto m_2 | ||||
4501377629 | \tan( \theta_{\rm Brewster} ) = \frac{ \sin( \theta_{\rm Brewster} )}{\cos( \theta_{\rm Brewster} )} | ||||
4504256452 | B^* = |B| \exp(-i \phi) | ||||
4522137851 | PE_2 | ||||
4560648264 | v = \sqrt{ \frac{K + (4/3) G}{\rho} } | ||||
4580545876 | d = v t - a t^2 + \frac{1}{2} a t^2 | ||||
4583868070 | B | ||||
4585828572 | \epsilon_0 \mu_0 = \frac{1}{c^2} | ||||
4585932229 | \cos(x) = \frac{1}{2}\left(\exp(i x)+\exp(-i x) \right) | ||||
4587046017 | KE | ||||
4593428198 | v_{\rm Earth\ orbit} = \frac{2 \pi r_{\rm Earth\ orbit}}{3.16\ 10^7 {\rm seconds}} | ||||
4598294821 | \exp(2 i x) = (\cos(x))^2+2i\cos(x)\sin(x)-(\sin(x))^2 | ||||
4627284246 | F_{\rm centripetal} = \frac{m_{\rm satellite} v_{\rm satellite}^2}{r} | ||||
4638429483 | \exp(2 i x) = (\cos(x)+ i \sin(x))(\cos(x)+ i \sin(x)) | ||||
4648451961 | v_2^2 - v_1^2 = (v_2 + v_1)(v_2 - v_1) | ||||
4651061153 | m_2 | ||||
4662369843 | x' = \gamma (x - v t) | ||||
4669290568 | PE_1 = -F x_1 | ||||
4689334676 | \theta_A = \frac{K_{\rm equilibrium}\ p_A}{1+K_{\rm equilibrium}\ p_A} | ||||
4742644828 | \exp(i x)+\exp(-i x) = 2 \cos(x) | ||||
4748157455 | a t = v - v_0 | ||||
4755369593 | x_2 | ||||
4778077984 | t_f = \frac{2 v_0 \sin(\theta)}{g} | ||||
4784793837 | \frac{KE_2 - KE_1}{t} = m v a | ||||
4798787814 | a t + v_0 = v | ||||
4800170179 | F = m g_{\rm Earth} | ||||
4805233006 | i \sin(i x) = \frac{1}{2}\left(\exp(x) - \exp(-x) \right) | ||||
4811121942 | W = \frac{1}{2} m v_2^2 - \frac{1}{2} m v_1^2 | ||||
4820320578 | F_{gravitational} = F_{centripetal} | ||||
4827492911 | \cos(2 x)+(\sin(x))^2 = 1 - (\sin(x))^2 | ||||
4829590294 | t_f | ||||
4830221561 | {\rm sech}^2\ x + \tanh^2(x) = \frac{4+\left(\exp(2x)-1-1+\exp(-2x)\right)}{\left(\exp(x)+\exp(-x)\right)^2} | ||||
4830480629 | x | ||||
4838429483 | \exp(2 i x) = \cos(2 x)+i \sin(2 x) | ||||
4843995999 | \frac{1}{2 i}\left(\exp(i x)-\exp(-i x) \right) = \sin(x) | ||||
4857472413 | 1 = \int \psi(x)\psi(x)^* dx | ||||
4857475848 | \frac{1}{a^2} = \frac{W}{2} | ||||
4858693811 | \frac{T_{\rm orbit}^2 G m_{\rm Earth}}{4 \pi^2} = r^3 | ||||
4866160902 | \frac{V}{R_{\rm total}} = \frac{V}{R_1} + \frac{V}{R_2} | ||||
4872163189 | \tanh(x) = \frac{\sinh(x)}{\cosh(x)} | ||||
4872970974 | \frac{PE_2 - PE_1}{t} = -F v | ||||
4878728014 | \sin(i x) = \frac{1}{2i}\left(\exp(-x) - \exp(x) \right) | ||||
4901237716 | 1 |
|
|||
4923339482 | i x = \log(y) | ||||
4928007622 | KE_1 = \frac{1}{2} m v_1^2 | ||||
4928239482 | \log(y) = i x | ||||
4935235303 | x | ||||
4938429482 | \exp(-i x) = \cos(x)+i \sin(-x) | ||||
4938429483 | \exp(i x) = \cos(x)+i \sin(x) | ||||
4938429484 | \exp(-i x) = \cos(x)-i \sin(x) | ||||
4939880586 | V_{\rm total} = I R_{\rm total} | ||||
4943571230 | \vec{ \nabla} \psi( \vec{r},t) = \frac{i}{\hbar} \vec{p} \psi_0 \exp\left(\frac{i}{\hbar}\left( \vec{p}\cdot\vec{r} - E t \right) \right) | ||||
4947831649 | \frac{1}{2} m_1 v_{\rm final}^2 = W_{\rm to\ system} | ||||
4948763856 | 2 a d + v_0^2 = v^2 | ||||
4948934890 | \langle \psi| \hat{A} |\psi \rangle = \langle a \rangle^* | ||||
4949359835 | \langle x^2\rangle -2\langle x^2 \rangle+\langle x \rangle^2 = \langle x^2 \rangle-\langle x \rangle^2 | ||||
4961662865 | x | ||||
4968680693 | \tan( x ) = \frac{ \sin( x )}{\cos( x )} | ||||
4985825552 | \nabla^2 E( \vec{r})\exp(i \omega t) = i \omega \mu_0 \epsilon_0 \frac{\partial}{\partial t} E( \vec{r})\exp(i \omega t) | representing-laplace-operator-nabla-in.html | |||
5002539602 | dU = C_V dT + \pi_T dV | ||||
5011888122 | v_2 | ||||
5021965469 | KE | ||||
5050429607 | G \frac{m_{\rm Earth} m}{r_{\rm Earth}} | ||||
5074423401 | V | ||||
5075406409 | PE | ||||
5085809757 | \frac{k_{\rm adsorption}}{k_{\rm desorption}} = \frac{[A_{\rm adsorption}]}{p_A [S]} | ||||
5089196493 | F | ||||
5125940051 | I = |A|^2 + B B^* + A B^* + B A^* | ||||
5128670694 | m_1 d_1 = m_2 d_2 | ||||
5136652623 | E = KE + PE | mechanical energy is the sum of the potential plus kinetic energies | |||
5144263777 | v^2 = v_0^2 + 2 a \left( v_0 t +\frac{1}{2} a t^2 \right) | ||||
5148266645 | t' = \frac{\gamma x (1 - \gamma^2 )}{\gamma^2 v} + \gamma t | ||||
5177311762 | v = \frac{2 \pi r}{T} | ||||
5181421075 | R_1 | ||||
5194141542 | x_f | ||||
5208737840 | T_{\rm geostationary\ orbit} | ||||
5239755033 | v_1 | ||||
5258419993 | R_1 | ||||
5284610349 | \gamma^2 | ||||
5323719091 | i \sinh x = \frac{1}{2i} \left( \exp(-x) - \exp(x) \right) | ||||
5345738321 | F = m a | Newton's second law of motion | Newton%27s_laws_of_motion#Newton's_second_law | ||
5349669879 | \tanh(x) = \frac{ \exp(x)-\exp(-x)}{\exp(x)+\exp(-x)} | ||||
5349866551 | \vec{v} = v_x \hat{x} + v_y \hat{y} | ||||
5353282496 | d = \frac{v_0^2}{g} | ||||
5359471792 | \frac{m_{\rm satellite}}{r} | ||||
5373931751 | t = t_f | ||||
5379546684 | y_f = - \frac{1}{2} g t_f^2 + v_0 t_f \sin(\theta) + y_0 | ||||
5398681502 | v | ||||
5398681503 | v | ||||
5404822208 | v_{\rm escape} = \sqrt{2 G \frac{m}{r}} | escape velocity | |||
5415824175 | x(t) = A \cos(\omega t) | ||||
5426308937 | v = \frac{d}{t} | ||||
5426418187 | [A_{\rm adsorption}] | ||||
5438722682 | x = v_0 t \cos(\theta) + x_0 | ||||
5453995431 | \arctan{ x } | ||||
5463275819 | I_2 | ||||
5514556106 | E_2 - E_1 = (KE_2 - KE_1) + (PE_2 - PE_1) | ||||
5516739892 | -1 |
|
|||
5530148480 | \vec{p}_{1}-\vec{p}_{2} = \vec{p}_{electron} | ||||
5542390646 | 2 a | ||||
5542528160 | \int dW = F \int_0^x dx | ||||
5563580265 | F_{\rm gravity} = G \frac{m_{\rm Earth} m_{\rm satellite}}{r^2} | ||||
5585739998 | I | ||||
5586102077 | r = d_1 + d_2 | ||||
5591692598 | KE_1 | ||||
5596822289 | W_{\rm to\ system} = -G m_1 m_2 \left(\left.\frac{-1}{x}\right|^r_{\infty}\right) | ||||
5611024898 | d = \frac{1}{2 a} (v^2 - v_0^2) | ||||
5620558729 | v_0 | ||||
5623794884 | A + B | ||||
5632428182 | \cos( \theta_{\rm Brewster} ) | ||||
5634116660 | \pi_T = \left(\frac{\partial U}{\partial V}\right)_T | definition of internal pressure at constant temperature | |||
5646314683 | m = A m_p | ||||
5658865948 | T^2 = \frac{r^3 4 \pi^2}{(m_1+m_2)G} | ||||
5667870149 | \theta | ||||
5669500954 | v^2 \gamma^2 | ||||
5684907106 | \frac{1}{d_2 4 \pi^2} | ||||
5693047217 | v_{\rm final} = -\sqrt{\frac{2 G m_2}{r}} | ||||
5727578862 | \frac{d^2}{dx^2} \psi(x) = -k^2 \psi(x) | ||||
5732331610 | W = G m_1 m_2 \left( \frac{1}{x} \bigg\rvert_{ r_{\rm Earth} }^{\infty} \right) | 2022-03-25 BHP: Conversion between Latex and Sympy is incomplete | |||
5733146966 | KE_2 - KE_1 = \frac{1}{2} m \left(v_2^2 - v_1^2\right) | ||||
5733721198 | d = \frac{1}{2} (v + v_0) \left( \frac{v - v_0}{a} \right) | ||||
5763749235 | -c^2 + c^2 \gamma^2 = v^2 \gamma^2 | ||||
5770088141 | r | ||||
5775658332 | 2 |
|
|||
5778176146 | t | ||||
5779256336 | W_{\rm by\ system} = KE_{\rm final} - KE_{\rm initial} | ||||
5781435087 | g | ||||
5781981178 | x^2 - y^2 = (x+y)(x-y) | difference of squares | Difference_of_two_squares | ||
5787469164 | 1 - \gamma^2 | ||||
5789289057 | v = \alpha c \sqrt{ \frac{m_e}{2 m} } | equation 4 in the PDF | |||
5799753649 | 2 |
|
|||
5803210729 | PE_2 | ||||
5832984291 | (\sin(x))^2 + (\cos(x))^2 = 1 | ||||
5838268428 | \alpha c = \frac{1}{4 \pi \epsilon_0} \frac{e^2}{\hbar} | ||||
5846177002 | t |
|
|||
5846639423 | v_{\rm final} = \sqrt{\frac{2 G m_2}{r}} | ||||
5850144586 | W_{\rm by\ system} = KE_{\rm final} | ||||
5857434758 | \int a dx = a x | ||||
5866629429 | {\rm sech}^2\ x + \tanh^2(x) = 1 | ||||
5868688585 | \frac{-\hbar^2}{2m} \nabla^2 \psi \left( \vec{r},t \right) = \frac{p^2}{2m} \psi( \vec{r},t) | representing-laplace-operator-nabla-in.html | |||
5868731041 | v_0 | ||||
5890617067 | R | ||||
5900595848 | k = \frac{\omega}{v} | ||||
5902985919 | \vec{F} = G \frac{m_1 m_2}{x^2} \hat{x} | Newton's law of universal gravitation | |||
5904227750 | m | ||||
5928285821 | x^2 + 2 x (b/(2 a)) + (b/(2 a))^2 = (x + (b/(2 a)))^2 | ||||
5928292841 | x^2 + (b/a)x + (b/(2 a))^2 = -c/a + (b/(2 a))^2 | ||||
5938459282 | x^2 + (b/a)x = -c/a | ||||
5945893986 | \frac{d^2 x}{dt^2} = -A \omega^2 \cos(\omega t) | ||||
5958392859 | x^2 + (b/a)x+(c/a) = 0 | ||||
5959282914 | x^2 + x(b/a) + (b/(2 a))^2 = (x+(b/(2 a)))^2 | ||||
5960438249 | E_1 | ||||
5962145508 | \alpha = \frac{nR}{VP} | ||||
5978756813 | W = G m_{\rm Earth} m \left( 0 - \frac{-1}{ r_{\rm Earth}} \right) | ||||
5982958248 | x = -\sqrt{(b/(2 a))^2 - (c/a)}-(b/(2 a)) | ||||
5982958249 | x+(b/(2 a)) = -\sqrt{(b/(2 a))^2 - (c/a)} | ||||
5985371230 | \vec{ \nabla} \psi( \vec{r},t) = \frac{i}{\hbar} \vec{p} \psi( \vec{r},t) | ||||
6023986360 | x | ||||
6026694087 | F_{centripetal} = m \frac{v^2}{r} | ||||
6031385191 | \sinh^2 x = \left(\frac{\exp(x) - \exp(-x)}{2}\right)\left(\frac{\exp(x) - \exp(-x)}{2}\right) | ||||
6038673136 | v | ||||
6050070428 | v_{0, x} | ||||
6055078815 | \left(\frac{\partial U}{\partial T}\right)_p = C_V \left(\frac{\partial T}{\partial T}\right)_p + \pi_T \left( \frac{\partial V}{\partial T} \right)_p | constant pressure | |||
6061695358 | V_2 = I R_2 | ||||
6083821265 | v_0 \cos(\theta) = v_{0, x} | ||||
6091977310 | KE_{\rm initial} = \frac{1}{2} m_1 v_{\rm initial}^2 | ||||
6098638221 | y_0 | ||||
6131764194 | W = G m_{\rm Earth} m \left( \frac{1}{x^2} \bigg\rvert_{ r_{\rm Earth} }^{\infty} \right) | evaluating-definite-integrals-for.html | |||
6134836751 | v_{0, x} = v_x | ||||
6158970683 | PE_1 | ||||
6175547907 | v_{\rm average} = \frac{v + v_0}{2} | ||||
6204539227 | -g t + v_{0, y} = \frac{dy}{dt} | ||||
6238632840 | r T_{\rm orbit}^2 | ||||
6239815585 | C_{\rm Earth\ orbit} | ||||
6240206408 | I_{\rm incoherent} = |A|^2 + |B|^2 | ||||
6240546932 | \frac{1}{K_{equilibrium}} = \frac{k_{\rm desorption}}{k_{\rm adsorption}} | ||||
6259833695 | A | ||||
6268336290 | F_{gravitational} = \frac{m}{r}\left(\frac{2\pi r}{T}\right)^2 | ||||
6281834543 | m_1 | ||||
6296166842 | P | ||||
6306552185 | I = (A + B)(A^* + B^*) | ||||
6346902704 | 1 |
|
|||
6348260313 | C_{\rm Earth\ orbit} = 2 \pi r_{\rm Earth\ orbit} | ||||
6353701615 | \theta_{\rm refracted} | ||||
6383056612 | KE | ||||
6397683463 | V \alpha = \left( \frac{\partial V}{\partial T} \right)_p | ||||
6404535647 | \cosh x = \frac{\exp(x) + \exp(-x)}{2} | ||||
6408214498 | c^2 | ||||
6410818363 | \theta | ||||
6417359412 | v_0 | ||||
6421241247 | d = v t - \frac{1}{2} a t^2 | ||||
6450985774 | n_1 \sin( \theta_1 ) = n_2 \sin( \theta_2 ) | Law of Refraction | eq 34-44 on page 819 in \cite{2001_HRW} | ||
6457044853 | v - a t = v_0 | ||||
6457999644 | \frac{[S_0]}{[A_{\rm adsorption}]} = \frac{1}{K_{\rm equilibrium}} \frac{1}{p_A} + 1 | ||||
6463266449 | t_f | ||||
6498985149 | v_{\rm escape} | ||||
6504442697 | v = \sqrt{ \frac{K}{\rho} } | ||||
6529120965 | B | ||||
6529793063 | I_{\rm incoherent} = |A|^2 + |A|^2 | ||||
6535639720 | r_{\rm Earth} | ||||
6546594355 | R_{\rm total} | ||||
6554292307 | t | ||||
6555185548 | A^* = |A| \exp(-i \theta) | ||||
6556875579 | \frac{I_{\rm coherent}}{I_{\rm incoherent}} = 2 | ||||
6572039835 | -g t + v_{0, y} = v_y | ||||
6599829782 | v_{\rm final} | ||||
6672141531 | dt | ||||
6681646197 | v | ||||
6701855578 | v_2 | ||||
6715248283 | PE = -F x | potential energy | Potential_energy | ||
6729698807 | v_0 | ||||
6732786762 | t | ||||
6742123016 | \vec{p}_{electron}\cdot\vec{p}_{electron} = ( \vec{p}_{1}\cdot\vec{p}_{1})+( \vec{p}_{2}\cdot\vec{p}_{2})-2( \vec{p}_{1}\cdot\vec{p}_{2}) | ||||
6749533119 | PE_1 | ||||
6753224061 | I_{\rm total} = I_1 + I_2 | ||||
6774684564 | \theta = \phi | for coherent waves | |||
6783009163 | r_{\rm adsorption} = r_{\rm desorption} | ||||
6785303857 | C = 2 \pi r | ||||
6800170830 | r_{\rm Schwarzschild} = \frac{2 G m}{c^2} | ||||
6829281943 | F_{\rm centripetal} = G \frac{m_1 m_2}{r^2} | ||||
6831637424 | \sin( 90^{\circ} - \theta_{\rm Brewster} ) = \cos( \theta_{\rm Brewster} ) | ||||
6831694380 | a = \frac{d^2 x}{dt^2} |
|
acceleration | ||
6838659900 | KE_2 | ||||
6870322215 | KE_{\rm escape} = \frac{1}{2} m v_{\rm escape}^2 | ||||
6885625907 | \exp(i \pi) = -1 + i 0 | ||||
6892595652 | \frac{1}{2} m_1 v_{\rm final}^2 = \frac{G m_1 m_2}{r} | ||||
6908055431 | x(t) = A \cos\left(\frac{k}{m} t\right) | ||||
6925244346 | \alpha = \frac{PV}{T} \frac{1}{VP} | ||||
6935745841 | F = G \frac{m_1 m_2}{x^2} | Newton's law of universal gravitation | Newton%27s_law_of_universal_gravitation#Modern_form | ||
6946088325 | v = \frac{C}{t} | ||||
6955192897 | r_{\rm desorption} = k_{\rm desorption} [A_{\rm adsorption}] | ||||
6964468708 | KE_1 | ||||
6974054946 | \frac{1}{2} g t_f | ||||
6976493023 | x | ||||
6998364753 | v_{\rm Earth\ orbit} = \frac{2 \pi \left( 1.496\ 10^8 {\rm km} \right)}{3.16\ 10^7 {\rm seconds}} | ||||
7002609475 | \frac{V}{R_2} = I_2 | ||||
7010294143 | T_{\rm orbit}^2 G m_{\rm Earth} = 4 \pi^2 r^3 | ||||
7011114072 | d = \frac{(v_0 + a t) + v_0}{2} t | ||||
7049769409 | 2 |
|
|||
7053449926 | r_{\rm geostationary\ orbit} | ||||
7057864873 | y' = y | frame of reference is moving only along x direction | |||
7083390553 | t | ||||
7107090465 | B B^* = |B|^2 | ||||
7112613117 | m_{\rm Earth} = \frac{(9.80665 m/s^2) r_{\rm Earth}^2}{6.67430*10^{-11}m^3 kg^{-1} s^{-2}} | ||||
7112646057 | v_{\rm final}^2 = \frac{2 G m_2}{r} | ||||
7140470627 | m | ||||
7154592211 | \theta_2 | ||||
7159989263 | i x | ||||
7175416299 | t_{\rm Earth\ orbit} = 1 {\rm year} | ||||
7191277455 | R | ||||
7194432406 | r_{\rm Schwarzschild} | ||||
7214442790 | x | ||||
7215099603 | v^2 = v_0^2 + 2 a t v_0 + a^2 t^2 | ||||
7217021879 | R_{\rm total} = R_1 + R_2 | ||||
7233558441 | d = v_0 t_f \cos(\theta) | ||||
7252338326 | v_y = \frac{dy}{dt} | ||||
7263534144 | c^2 | ||||
7267155233 | \frac{PE_2 - PE_1}{t} = -F \left( \frac{x_2 - x_1}{t} \right) | ||||
7267424860 | \frac{1}{\theta_A} = \frac{1+(K_{\rm equilibrium}\ p_A)}{K_{\rm equilibrium}\ p_A} | ||||
7321695558 | \theta_{\rm Brewster} | ||||
7326066466 | G | ||||
7337056406 | \gamma^2 x | ||||
7354529102 | y = - \frac{1}{2} g \left( \frac{x - x_0}{v_{0, x}} \right)^2 + v_{0, y} \frac{x - x_0}{v_{0, x}} + y_0 | ||||
7375348852 | \theta_{\rm Brewster} | ||||
7376526845 | \sin(\theta) = \frac{v_{0, y}}{v_0} | ||||
7391837535 | \cos(\theta) = \frac{v_{0, x}}{v_0} | ||||
7410124465 | R_{\rm total} | ||||
7410526982 | 2/m_1 | ||||
7445388869 | -1 |
|
|||
7453225570 | x | ||||
7455581657 | v_{0, x} = \frac{dx}{dt} | ||||
7466829492 | \vec{ \nabla} \cdot \vec{E} = 0 | ||||
7473576008 | \frac{-1}{A \cos(\omega t)} | ||||
7476820482 | C | ||||
7497687256 | V | ||||
7513513483 | \gamma^2 (c^2 - v^2) = c^2 | ||||
7517073655 | [S_0] = \left(\frac{1}{K_{\rm equilibrium}} \frac{1}{p_A} + 1\right)[A_{\rm adsorption}] | ||||
7556442438 | 4 \pi^2 | ||||
7560908617 | m | ||||
7564010952 | -1 |
|
|||
7564894985 | \int \cos\left(\frac{2n\pi}{W} x\right) dx = \frac{W}{2n\pi}\sin\left(\frac{2n\pi}{W} x\right) | ||||
7572664728 | \cos(2 x) + 2 (\sin(x))^2 = 1 | ||||
7573835180 | PE_{\rm Earth\ surface} = -W | the potential energy at the surface of the Earth is equal to the work needed to get it from the center of the Earth to the surface | |||
7575738420 | \left(\sin\left(\frac{n \pi}{W}x\right) \right)^2 = \frac{1-\cos\left(2\frac{n \pi}{W}x\right)}{2} | ||||
7575859295 | \vec{ \nabla} \times \vec{ \nabla} \times \vec{E} = \vec{ \nabla}( \vec{ \nabla} \cdot \vec{E} - \nabla^2 \vec{E}) | ||||
7575859300 | \epsilon^{i,j,k} \hat{x}_i \nabla_j ( \vec{ \nabla} \times \vec{E} )_k = \vec{ \nabla}( \vec{ \nabla} \cdot \vec{E} - \nabla^2 \vec{E}) | ||||
7575859302 | \epsilon^{i,j,k} \epsilon_{n,j,k} \hat{x}_i \nabla_j \nabla^m E^n = \vec{ \nabla}( \vec{ \nabla} \cdot \vec{E} - \nabla^2 \vec{E}) | ||||
7575859304 | \epsilon^{i,j,k} \epsilon_{n,j,k} = \delta^{l}_{\ \ j} \delta^{m}_{\ \ k} - \delta^{l}_{\ \ k} \delta^{m}_{\ \ h} | Covariance_and_contravariance_of_vectors | |||
7575859306 | \left( \delta^{l}_{\ \ j} \delta^{m}_{\ \ k} - \delta^{l}_{\ \ k} \delta^{m}_{\ \ h} \right) \hat{x}_i \nabla_j \nabla^m E^n = \vec{ \nabla}( \vec{ \nabla} \cdot \vec{E} - \nabla^2 \vec{E}) | Covariance_and_contravariance_of_vectors | |||
7575859308 | \left( \delta^{l}_{\ \ j} \delta^{m}_{\ \ k} \hat{x}_i \nabla_j \nabla^m E^n\right)-\left( \delta^{l}_{\ \ k} \delta^{m}_{\ \ h} \hat{x}_i \nabla_j \nabla^m E^n \right) = \vec{ \nabla}( \vec{ \nabla} \cdot \vec{E} - \nabla^2 \vec{E}) | Covariance_and_contravariance_of_vectors | |||
7575859310 | \hat{x}_m \nabla_n \nabla^m E^n - \hat{x}_n \nabla_m \nabla^m E^n = \vec{ \nabla}( \vec{ \nabla} \cdot \vec{E} - \nabla^2 \vec{E}) | ||||
7575859312 | \vec{ \nabla}( \vec{ \nabla} \cdot \vec{E} - \nabla^2 \vec{E}) = \vec{ \nabla}( \vec{ \nabla} \cdot \vec{E} - \nabla^2 \vec{E}) |
|
|||
7587034465 | \theta | ||||
7607271250 | \theta | ||||
7621705408 | I = |A|^2 + |B|^2 + |A| |B| \exp(-i \theta) \exp(i \phi) + |A| |B| \exp(i \theta) \exp(-i \phi) | ||||
7630953440 | \frac{K_{\rm equilibrium} p_A}{K_{\rm equilibrium} p_A} | ||||
7652131521 | \frac{dx}{dt} = -A \omega \sin (\omega t) | ||||
7672365885 | F_{gravitational} = \frac{4 \pi^2 m r}{T^2} | ||||
7675171493 | V_1 = I R_1 | ||||
7676652285 | KE_2 = \frac{1}{2} m v_2^2 | ||||
7696214507 | n_1 \sin( \theta_{\rm Brewster} ) = n_2 \sin( 90^{\circ} - \theta_{\rm Brewster} ) | ||||
7701249282 | v_u = \alpha c \sqrt{ \frac{m_e}{m_p} } | when A = 1 | |||
7708501762 | C_{\rm Earth\ orbit} | ||||
7729413831 | a_x \hat{x} + a_y \hat{y} = \frac{d}{dt} \left(v_x \hat{x} + v_y \hat{y} \right) | ||||
7731226616 | {\rm sech}\ x = \frac{1}{\cosh x} | ||||
7734996511 | PE_2 - PE_1 = -F ( x_2 - x_1 ) | ||||
7735731560 | \cosh^2 x - \sinh^2 x = \frac{1}{4}\left( \exp(2x)+1+1+\exp(-2x) - \left(\exp(2x)-1-1-\exp(-2x)\right) \right) | ||||
7735737409 | \frac{KE_2 - KE_1}{t} = m v \frac{ v_2 - v_1 }{t} | ||||
7741202861 | x = \gamma^2 x - \gamma^2 v t + \gamma v t' | ||||
7743841045 | \gamma^2 | ||||
7749253510 | W = G \frac{m_{\rm Earth} m }{ r_{\rm Earth}} | ||||
7774819339 | R | ||||
7798615279 | I_{\rm total} | ||||
7816982139 | m/s^2 |
|
|||
7819443873 | r | ||||
7826132469 | \left(\frac{\partial U}{\partial T}\right)_p = C_V + \pi_T V \alpha | ||||
7837519722 | v = \sqrt{f} \sqrt{\frac{E}{m}} | ||||
7844317489 | I | ||||
7846240076 | m_{\rm Earth} = \frac{(9.80665 m/s^2) r_{\rm Earth}^2}{G} | ||||
7857757625 | n_1 | ||||
7875206161 | E_2 = KE_2 + PE_2 | ||||
7882872592 | W_{\rm to\ system} = \int_{\infty}^r \vec{F}\cdot d\vec{r} | ||||
7905984866 | m_1 | ||||
7906112355 | \gamma^2 = \frac{c^2}{c^2 - \gamma^2} | ||||
7912578203 | v | ||||
7917051060 | \vec{p}_{electron} = \vec{p}_{1}-\vec{p}_{2} | ||||
7924063906 | K_{equilibrium} = \frac{k_{\rm adsorption}}{k_{\rm desorption}} | ||||
7924842770 | T | ||||
7928111771 | \frac{1}{\theta_A} = \frac{1}{K_{\rm equilibrium} p_A} + 1 | ||||
7935917166 | r_{\rm Earth} | ||||
7939765107 | v^2 = v_0^2 + 2 a d | ||||
7939947931 | KE_2 | ||||
8014566709 | \gamma^2 v t | ||||
8020058613 | r | ||||
8044416349 | d_2 | ||||
8046208134 | I_{\rm coherent} = |A|^2 + |A|^2 + |A| |A| 2 | ||||
8049905441 | \Delta KE = KE_{\rm final} - KE_{\rm initial} | change in kinetic energy | |||
8059639673 | v^2 = \frac{4 \pi^2 r^2}{T_{\rm orbit}^2} | ||||
8061701434 | PE_1 | ||||
8065128065 | I = A A^* + B B^* + A B^* + B A^* | ||||
8066819515 | v | ||||
8072682558 | x_0 | ||||
8090924099 | v = \sqrt{ \left( f\frac{E}{a^3} \right) \frac{1}{\rho} } | ||||
8106885760 | \alpha = \frac{1}{4 \pi \epsilon_0} \frac{e^2}{\hbar c} | fine structure constant definition | |||
8111389082 | x | ||||
8120663858 | y_f | ||||
8122039815 | \frac{d_1+d_2}{d_1+d_2} | ||||
8131665171 | \frac{1}{\theta_A} = \frac{[S_0]}{[A_{\rm adsorption}]} | ||||
8135396036 | t | ||||
8139187332 | \vec{p}_{1} = \vec{p}_{2}+\vec{p}_{electron} | ||||
8145337879 | -g t dt + v_{0, y} dt = dy | ||||
8162179726 | k_{\rm adsorption} p_A | ||||
8173074178 | x | ||||
8198310977 | 0 = - \frac{1}{2} g t_f^2 + v_0 t_f \sin(\theta) + y_0 | ||||
8228733125 | a_y = \frac{d}{dt} v_y | ||||
8257621077 | \vec{p}_{\rm before} = \vec{p}_{1} | ||||
8269198922 | 2 a d = v^2 - v_0^2 | ||||
8283354808 | I_{\rm coherent} = |A|^2 + |B|^2 + |A| |B| 2 \cos( 0 ) | ||||
8311458118 | \vec{p}_{\rm after} = \vec{p}_{2}+\vec{p}_{electron} | ||||
8332931442 | \exp(i \pi) = \cos(\pi)+i \sin(\pi) | ||||
8357234146 | KE = \frac{1}{2} m v^2 | kinetic energy | Kinetic_energy | ||
8360117126 | \gamma = \frac{-1}{\sqrt{1-\frac{v^2}{c^2}}} | not a physically valid result in this context | |||
8361238989 | a_{centripetal} = \frac{v^2}{r} | ||||
8362338572 | v_{\rm escape} | ||||
8368984890 | \kappa_T = \frac{-1}{V} \left( \frac{ \partial }{\partial P}\left(\frac{nRT}{P}\right) \right)_T | ||||
8396997949 | I = | A + B |^2 | intensity of two waves traveling opposite directions on same path | |||
8399484849 | \langle x^2 - 2 x \langle x \rangle + \langle x \rangle^2 \rangle = \langle x^2 \rangle-\langle x \rangle^2 | ||||
8405272745 | W_{\rm to\ system} = -G m_1 m_2\int_{\infty}^r \frac{1}{x^2} dx | ||||
8406170337 | y | ||||
8416464049 | KE_{\rm escape} | ||||
8418527415 | \sin(i x) = i \sinh(x) | ||||
8435841627 | P V = n R T | Ideal_gas_law | |||
8460820419 | v_x = \frac{dx}{dt} | ||||
8483686863 | \sin(2 x) = \frac{1}{2i}\left(\exp(i 2 x)-\exp(-i 2 x) \right) | ||||
8484544728 | -a k^2\sin(k x) + -b k^2\cos(k x) = -a k^2 \sin(kx) + -b k^2 \cos(k x) | ||||
8485757728 | a \frac{d^2}{dx^2}\sin(kx) + b \frac{d^2}{dx^2}\cos(k x) = -a k^2 \sin(kx) + -b k^2 \cos(kx) | ||||
8485867742 | \frac{2}{W} = a^2 | ||||
8486706976 | v_{0, x} t + x_0 = x | ||||
8489593958 | d(u v) = u dv + v du | ||||
8489593960 | d(u v) - v du = u dv | ||||
8489593962 | u dv = d(u v) - v du | ||||
8489593964 | \int u dv = u v - \int v du | ||||
8494839423 | \nabla^2 \vec{E} = \mu_0 \epsilon_0 \frac{\partial^2 \vec{E}}{\partial t^2} | ||||
8495187962 | \theta_{\rm Brewster} = \arctan{ \left( \frac{ n_1 }{ n_2 } \right) } | ||||
8497631728 | I = |A|^2 + |B|^2 + |A| |B| 2 \cos( \theta - \phi ) | ||||
8515803375 | z' = z | frame of reference is moving only along x direction | |||
8532702080 | \cosh^2 x = \left(\frac{\exp(x) + \exp(-x)}{2}\right)\left(\frac{\exp(x) + \exp(-x)}{2}\right) | ||||
8552710882 | KE_{\rm final} = \frac{1}{2} m_1 v_{\rm final}^2 | ||||
8558338742 | E_2 = E_1 | conservation of energy | Conservation_of_energy | ||
8563535636 | \cosh^2 x - \sinh^2 x = \left(\frac{\exp(x) + \exp(-x)}{2}\right)\left(\frac{\exp(x) + \exp(-x)}{2}\right) - \left(\frac{\exp(x) - \exp(-x)}{2}\right)\left(\frac{\exp(x) - \exp(-x)}{2}\right) | ||||
8571466509 | c^2 - \gamma^2 | ||||
8572657110 | 1 = \int |\psi(x)|^2 dx |